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Refinement of Protein Structures by Iterative
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We developed a method for structure characterization of assembly
components by iterative comparative protein structure modeling and
fitting into cryo-electron microscopy (cryoEM) density maps. Specifically,
we calculate a comparative model of a given component by considering
many alternative alignments between the target sequence and a related
template structure while optimizing the fit of a model into the
corresponding density map. The method relies on the previously
developed Moulder protocol that iterates over alignment, model building,
and model assessment. The protocol was benchmarked using 20 varied
target–template pairs of known structures with less than 30% sequence
identity and corresponding simulated density maps at resolutions from 5 Å
to 25 Å. Relative to the models based on the best existing sequence profile
alignment methods, the percentage of Ca atoms that are within 5 Å of the
corresponding Ca atoms in the superposed native structure increases on
average from 52% to 66%, which is half-way between the starting models
and the models from the best possible alignments (82%). The test also
reveals that despite the improvements in the accuracy of the fitness
function, this function is still the bottleneck in reducing the remaining
errors. To demonstrate the usefulness of the protocol, we applied it to the
upper domain of the P8 capsid protein of rice dwarf virus that has been
studied by cryoEM at 6.8 Å. The Ca root-mean-square deviation of the
model based on the remotely related template, bluetongue virus VP7,
improved from 8.7 Å to 6.0 Å, while the best possible model has a Ca RMSD
value of 5.3 Å. Moreover, the resulting model fits better into the cryoEM
density map than the initial template structure. The method is being
implemented in our program MODELLER for protein structure modeling
by satisfaction of spatial restraints and will be applicable to the rapidly
increasing number of cryoEM density maps of macromolecular assemblies.
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Introduction

With the successes of whole genome sequencing,
structural biology, and proteomics, there is a
growing opportunity and need to study the
structure and function of macromolecular
assemblies.1–3 Given the difficulties of applying
lsevier Ltd. All rights reserve

o-electron
BDV, bluetongue
iation.
ing author:
X-ray crystallography and NMR spectroscopy to
large assemblies, a key role is played by cryo-
electron microscopy (cryoEM). While currently
limited to intermediate resolutions (6–15 Å) for
single particle reconstructions, cryoEM offers a
number of advantages. Individual particles can be
imaged in near-native conditions as well as in
different functional states, enabling a structural
analysis that can reveal salient features of the
assembly and its components.4–7 Additionally,
fitting of high-resolution structures of assembly
components into cryoEM density maps may pro-
vide pseudo-atomic models for the whole
assembly,8,9 and thus significant insights into
d.
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the structure, function, and dynamics of single
proteins and their complexes.10–18

Unfortunately, experimentally determined atomic-
resolution structures of assembly components are
frequently unavailable. Even when they are avail-
able, induced fit may severely limit their usefulness
in the construction of the complex. In such cases, it
may be possible to get useful models of the
components with comparative protein structure
modeling (homology modeling).10,19–24,65 In com-
parative modeling, the structure of a target protein
sequence is predicted by: (i) finding one or more
related proteins of known structures (i.e. templates);
(ii) aligning the target sequence to the template
structures; (iii) building a model based primarily on
the alignment from the previous step; and (iv)
assessing the model. Currently, w1.1!106 of the
w1.9!106 known proteins sequences25 have at least
one domain that can be modeled based on its
similarity to one or more of the w32,000 known
protein structures.26 Thus, the number of models
with an accuracy that is at least as high as that of the
intermediate resolution cryoEM structures is almost
two orders of magnitude greater than the number
of experimentally determined atomic structures.
Moreover, comparative protein structure prediction
is becoming increasingly applicable and accurate not
only due to the structural genomics initiatives, but
also to the availability of faster computers and
improved prediction methods.20,22–24,26,27

Despite these advances, incorrect fold assign-
ments and/or target–template alignments are the
primary sources of errors in comparative models,
especially in models of sequences that are only
remotely related to their templates (i.e. at less than
30% sequence identity). Unfortunately, most
pairs of detectably related protein sequences
and structures fall within this category, with corres-
pondingly large alignment errors (Theory).28,29

Other errors in comparative modeling include
distortions and shifts of the backbone and side-
chains.21

One way of minimizing the alignment errors is to
explore multiple alternative alignments, generate the
corresponding models, and identify the best ones
in the ensemble of structures.30 An example is the
“moulding” method implemented in the program
Moulder that iterates over alignment, model building,
and model assessment.31 During this iterative
process: (i) new alignments are constructed
by application of five different genetic algorithm
operators, such as alignment mutations and cross-
overs; (ii) comparative models corresponding to
these alignments are built by satisfaction of
spatial restraints as implemented in the program
MODELLER;19 and (iii) themodels are evaluated by a
composite model assessment score.32 Using initial
alignments generated from established methods,
such as PSI-BLAST33 and SAM (version 3.3.1),34

moulding has been shown to improve the alignments
by 15%–25%. However, the accuracy of moulding is
currently limited by the ability of the fitness function
to identify the most accurate model.31
Recently, we demonstrated that alternative com-
parative models can be ranked by fitting them into a
cryoEM density map.35 Following this work, we
focus here on model building and refinement that
depends on both the cryoEM density and compara-
tive modeling considerations (Moulder-EM) (The-
ory). The method was tested against a benchmark
consisting of 20 cases of target–template pairs of
known structures that are related at less than 30%
sequence identity (Results). To illustrate the method
with a practical example, we applied it to a very
difficult case, the modeling of the upper domain of
the P8 capsid protein of rice dwarf virus. Finally, we
discuss the implications of the results for compara-
tive protein structure modeling and for improving
the interpretation of cryoEM density maps of whole
macromolecular assemblies (Discussion).
Theory

Errors in comparative modeling

The primary requirement for reliable comparative
modeling is a detectable similarity between the
sequence of interest (target sequence) and a known
structure (template).36,37 The detected similarity
between the target and the template sequences is
usually quantified in terms of sequence identity or
statistical measures such as E-value or Z-score,
depending on the method used. Sequence–
structure relationships are coarsely classified into
three different regimes in the sequence similarity
spectrum: (i) the easily detected relationships charac-
terized byO30% sequence identity; (ii) the “twilight
zone” corresponding to relationships with statisti-
cally significant sequence similarity in the 10%–30%
range; and (iii) the “midnight zone” corresponding
to statistically insignificant sequence similarity.38

For closely related protein sequences with iden-
tities higher than 30%–40%, the alignments produced
by all methods are almost always largely correct.
The sensitivity of the search and accuracy of the
alignment become progressively difficult as the
relationships move into the twilight-zone.38,39 In
the twilight-zone, profile-sequence alignment
methods40 (e.g. PSI-BLAST,33 SAM,34 HMMER,41

and profile.build in MODELLER-826) are more sensi-
tive in detecting related structures than the pairwise
sequence-basedmethods, resulting in approximately
45% of residues in the 0–40% sequence identity range
aligned correctly.29,42 However, profile–profile align-
ment methods (e.g. FFAS,43 SP3,44 HHpred,48 SAL-
IGN,29 and the profile.scan command inMODELLER-
829 have proven to include the most sensitive and
accurate fold assignment and alignment protocols to
date.28,29,45,46 These methods detect w28% more
relationships at the superfamily level and improve
the alignment accuracy by 15%–20% compared to
profile-sequence alignment methods.29,44

As the sequence identity drops below the
threshold of the twilight zone, there is usually
insufficient signal in the sequences or in their
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profiles for the sequence-based methods to detect
true relationships and produce accurate align-
ments.47 Sequence–structure threading methods
(e.g. GenTHREADER,49 3D-PSSM,50 FUGUE,51

SP3,44 and SAM-T02 multi-track HMM52,53) are
most useful in this regime as they can sometimes
recognize common folds even in the absence of any
statistically significant sequence similarity.54

And finally, alignment errors can also be
minimized by iterating over the process of calculat-
ing alignments, building models, and evaluating
models (i.e. moulding).30,31,55–57
The Moulder-EM protocol

The previously developed program Moulder uses
a genetic algorithm that iterates over alignment,
model building, and model assessment (Figure 1).31

Briefly, the protocol begins by calculating the initial
alignments of each target–template pair that are
then submitted to 25 iterations of alignment, model
building, and model assessment. Approximately
300 child alignments are produced in each iteration
Figure 1. The Moulder-EM protocol for improving the
accuracy of molecular models determined by compara-
tive protein structure modeling and fitting into cryoEM
density maps. This protocol uses genetic algorithm
operators31 to evolve the alignments and the correspond-
ing models according to a fitness function consisting of
both a statistical potential Z-score32 and a density-fitting
Z-score between a model and a cryoEM density map
(Mod-EM).35
and the corresponding molecular models are built
using the automodel class of the MODELLER-8
Python interface. Alignments for the 25 models
with the best fitness function scores are selected as
the parent alignments for the next iteration. The
final model is the best scoring model from any of
the iterations. In this study, we improved the initial
alignments, the fitness function that guides the
genetic algorithm, as well as the final model
assessment; the latter two improvements rely on
the cryoEM density maps (Moulder-EM). The
protocol was implemented on a cluster of compu-
ters running Linux. For a 150 residue target
sequence, the protocol currently requires w15 h of
CPU time on 50 nodes with dual 1.5 GHz Pentium
III CPUs; the CPU time scales approximately
linearly with the length of the sequence.

Preparation of initial target–template alignments

First, a multiple sequence alignment (profile)
was built for each of the target and template
sequences using the profile.build command in
MODELLER-826 Next, a profile–profile alignment
was calculated between the target and template
profiles using the profile.scan command of MOD-
ELLER-8.29 profile.scan was used with changing gap
penalties (opening gap penalty ranging from
K5000 to 0 in steps of 500, extension gap penalty
ranging from K250 to 0 in steps of 50) to get an
initial population of 5 to 15 different alignments
after redundancy removal.

Fitness function of Moulder-EM

The fitness function is a linear combination of a
statistical potential Z-score (Zs) and a density fitting
Z-score (Zc): FZw1ZsKw2Zc, where w1 and w2 are
the weights of the two Z-scores. We used Z-scores
instead of the original scores (Z-scoreZ(scoreKm)/
s) to ensure good performance of a single set of
weights w1 and w2 across a full spectrum of
applications. The statistical potential Z-scores
were calculated using the mean, m, and standard
deviation s of 200 statistical potential scores
obtained from threading random sequences of the
same composition as the target sequence onto the
structure of the assessed model.32 The statistical
potential score of a model is the sum of the solvent-
accessibility terms for all Ca atoms and distance-
dependent terms for all pairs of Ca and Cb atoms.
The solvent-accessibility term for a Cb

atom depends on its residue type and the number
of other Cb atoms within 10 Å; the non-bonded
terms depend on the atom and residue types
spanning the distance, the distance itself, and the
number of residues separating the distance-span-
ning atoms in the sequence. These potential terms
reflect the statistical preferences observed in 760
non-redundant proteins of known structure.
The density-fitting Z-score is a normalized

density-fitting score. The density-fitting score is
the maximized cross-correlation coefficient between
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the cryoEM density map and the probe (model)
density calculated with Mod-EM (i.e. the density.
grid_search command in MODELLER-8).35 The
normalization relies on the mean and standard
deviation obtained from a population of w7500
alignments constructed in 25 iterations of the
Moulder program with the original fitness function
that depends only on the statistical potential (i.e.
independent of the density-fitting score). When the
fit is good, the density-fitting Z-score is positive; it
usually ranges from K10 to 10.

Five protocols of Moulder-EM were tested,
corresponding to different weights ([w1,w2]) of
[1,0], [1,1], [1,2], [1,8], and [0,1] for the statistical
potential Z-score and the density-fitting Z-score in
the fitness function, respectively.
Final model selection

As in the original Moulder program, after 25
iterations of alignment, model building, and
model assessment, the final alignment is selected
by relying on a composite score that is based on
the mean and standard deviation of the entire
population of alignments and corresponding
models (thousands). The use of this composite
criterion instead of the fitness function for the
selection of the final alignment is based on the
benchmarks of Moulder.31 Previously, the compo-
site score was a linear combination of five
Z-scores31: pair statistical potential (Pp), surface
statistical potential (Ps), structural compactness
(Sc), harmonic average distance (Ha), and an
alignment score (As). In the Moulder-EM protocol,
the composite model assessment score (Z 0) is a
linear combination of the original composite score
(Z) and the density-fitting Z-score (Zc) using the
same weights as in the calculation of the fitness
function F: Z 0Zw1$ZKw2$Zc. Here, Zc is calcu-
lated by normalizing the density-fitting Z-scores
using as a reference the models created during
Moulder-EM iterations.
Benchmark

The benchmark for testing the new moulding
protocol consists of 20 pairs of proteins of known
structure sharing between 10% and 31% sequence
identity (17% on average), including target–
template pairs from the two original studies31,35 as
well as several new pairs (Table 1). These proteins
range in size from 81 to 388 residues (203 on
average) and represent all major fold classes (i.e. a,
b, aCb, and a/b).58 For each of the native structures
of the 20 target proteins, a density map was
simulated at 10 Å resolution using the PDB2MRC
command in the EMAN package,59 an achievable
resolution for single-particle cryoEM. For three
proteins in the benchmark, additional density
maps were simulated at 5 Å , 15 Å , 20 Å , and
25 Å resolution.
Modeling the upper domain of the rice dwarf
virus P8 protein

To illustrate the Moulder-EM protocol to a
practical problem where even fold assignment is
ambiguous, we applied it to the upper domain of
the P8 protein of rice dwarf virus (RDV) (EMDB
code: 1060; PDB code: 1uf2),60,61 corresponding to
the middle part of the protein (residues 143–252).
The lower domain was not modeled because the
detected template structure60 has significant secon-
dary structure segment shifts, a problem that we are
not addressing in this study. The corresponding
density map was segmented from the original
6.8 Å resolution cryoEM density map.60 The VP7
protein of bluetongue virus (BTV) (PDB code 1bvp)
was selected as the template structure. Although
there is no statistically significant sequence simi-
larity between RDV P8 and BTV VP7 (3% sequence
identity), they share a common fold. Thus, this case
study is more difficult than any of the proteins in the
benchmark. In constructing the initial alignments, it
was impossible to detect any sequences related to
both RDV P8 and BTV VP7 by using the profile.build
command in MODELLER-8. Instead, two programs
that take into consideration the secondary structure
when determining the gap penalty at each position
were used: the alignment. align2d command in
MODELLER-862 and Fugue.51 The optimally scoring
alignments from each program were refined by 30
Moulder-EM iterations using a fitness function with
the previously determined optimal weights [w1,w2]
of [1,2]. We performed 30 iterations instead of the
default 25 to make sure the protocol converged.

Measures of alignment accuracy

The accuracy of a target–template alignment
was measured by superposing the corresponding
target model to its native structure; the target
model was calculated with the automodel class of
MODELLER-8. Two criteria were used to assess
the geometrical accuracy of the models of each
protein. First, the root-mean-square deviation
(RMSD) between the corresponding Ca atoms in
the model and the native structure was calculated
using rigid-body least-squares superposition of
all the Ca atoms, as implemented in the model.
superpose command of MODELLER-8. Second,
the “native overlap” (NO) was defined as the
percentage of the Ca atoms in the model that are
within 5 Å of the corresponding atoms in the
superposed native structure. For reference, the
accuracy of the target–template structure-based
alignment calculated with the program CE63 was
assessed in the same way; the CE structure-based
alignment optimizes the number of Ca positions
superposed within 4 Å of each other while
minimizing the RMSD between the two sets of
superposed positions.

For assessing the statistical significance of a
difference between the accuracies of two alignment
methods, the parametric Student’s t-test (at the 95%



Table 1. The 20 target–template pairs of proteins with known structures included in the benchmark

Target–template

Structural
alignment Initial alignment

Final alignment ([w1,w2])

[1,0] [1,1] [1,2] [1,8] [0,1]

PDB codes Seq. id. NO (%) CR (Å) NO (%) CR (Å) NO (%) CR (Å) NO (%) CR (Å) NO (%) CR (Å) NO (%) CR (Å) NO (%) CR (Å)

A. Difficult set
1atnA(4-354)-1atr(3-382) 13.4 79.2 6.8 45.6 9.3 47.3 9.5 48.4 9.4 46.4 9.4 55.8 8.8 49.0 9.1
1cauB(246-423)-1cauA(48-224) 18.9 86.0 3.5 51.1 8.9 55.6 8.7 65.2 8.9 69.1 4.4 59.6 9.0 65.2 8.1
1eaf(433-633)-4cla(31-218) 19.7 86.1 4.0 49.3 7.5 62.7 6.3 68.2 5.2 64.2 5.5 67.7 5.2 64.6 6.7
1gky(1-186)-3adk(8-194) 19.0 74.2 5.9 68.3 6.6 70.4 6.2 71.0 6.8 73.1 6.5 60.8 7.2 50.5 7.8
1ltsD(17-102)-1bovA(2-69) 4.4 81.4 3.8 36.0 13.1 16.3 13.1 43.0 10.0 59.3 9.4 82.6 3.8 54.7 7.3
1mup(10-161)-1rbp(11-175) 15.4 87.5 3.6 65.8 6.2 67.8 7.0 66.4 6.7 67.1 6.2 67.8 4.6 65.8 5.0
1ten(803-891)-3hhrB(131-233) 18.4 89.9 4.0 65.6 5.1 55.6 5.6 87.8 3.7 92.2 3.7 94.4 3.7 93.3 3.4
2afnA(36-324)-1aozA(1-300) 18.5 87.9 3.4 61.9 7.7 65.4 5.7 64.0 6.2 64.0 5.5 64.4 6.4 59.9 6.0
2omf(10-340)-2por(1-301) 13.2 72.5 5.2 40.2 8.1 35.3 8.9 61.9 6.4 56.8 6.9 58.9 6.7 50.8 6.7
2sar(7A-91A)-9rnt(2-104) 12.5 74.1 4.9 54.1 5.6 56.5 5.6 67.1 5.0 74.1 5.0 63.5 5.3 65.9 4.9
3hlaB(4-98)-2rhe(3-108) 2.4 82.1 4.3 47.4 8.1 47.4 7.3 50.5 6.2 52.6 7.0 35.8 6.3 37.9 6.4
8i1b(7-151)-4fgf(20-143) 14.1 87.5 3.2 36.1 9.1 48.6 8.6 43.1 8.2 69.4 5.6 61.1 5.7 61.1 6.5
Average 14.2 82.4 4.4 51.8 8.0 52.4 7.7 61.4 6.9 65.7 6.3 64.4 6.1 59.9 6.5

B. Easy set
1et0A(7-289)-1daaA(2-273) 21.8 87.4 3.9 87.8 4.7 81.1 7.2 83.9 4.5 87.0 4.5 83.9 4.5 84.3 5.4
1occA(1-188)-1fftC(20:203) 14.7 80.9 3.4 81.9 3.8 84.0 3.4 79.3 4.4 86.2 3.2 76.6 3.8 84.0 3.4
1ivg(82-469)-1nsbA(76-465) 26.8 84.3 4.3 88.1 3.2 86.1 3.3 85.3 3.5 86.9 3.5 93.3 2.7 84.0 3.6
1lgaA(13-291)-2cyp(15-289) 18.0 92.1 2.9 82.1 4.2 84.6 3.8 84.2 4 81.7 3.8 80.6 4.3 77.1 4.8
2 cmd(1-310)-6ldh(21-328) 21.8 91.0 3.8 80.0 4.9 79.5 5.5 81.0 4.2 80.5 4.2 78.6 5.0 73.8 4.1
2fbjL(1-210)-8fabB(1-221) 23.4 87.4 3.9 87.8 4.7 82.7 7.7 83.9 4.5 87.0 4.5 83.9 4.5 84.3 5.4
2mtaC(45-125)-1ycc(2-103) 13.0 93.8 2.5 70.4 3.9 77.8 3.7 81.5 3.4 85.2 3.0 79.0 3.7 82.7 3.3
2pna(20-119)-1shaA(3-104) 31.2 90.0 3.2 86.0 3.5 85.0 3.6 91.0 3.3 86.0 3.4 83.0 4.3 81.0 4.5
Average 21.8 89.2 3.4 81.8 4.1 82.0 4.4 83.1 3.9 84.7 3.6 81.8 4.0 80.2 4.2

Total average 17.0 85.1 4.0 63.8 6.4 64.3 6.4 70.1 5.7 73.1 5.2 71.3 5.2 68.1 5.6

CR is the Ca RMSD value between a model and the corresponding native structure and NO is the native overlap within 5 Å cutoff (see Theory). Target–template sequence identity (Seq. id.) is
calculated from the CE structure-based alignment.63 The initial alignment column refers to the model with the highest statistical potential Z-score (Zs) among the models built from the initial profile–
profile alignments. The final alignment column refers to the model from the whole population that has the highest composite model assessment score (Z 0). The ([w1,w2]) column gives the weights for
the statistical potential (Zs) and the density-fitting Z-score (Zc), which define the fitness function (F) for all the iterations and for the composite assessment score (Z 0) in the final model selection.
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confidence value) was applied. The accuracy of a
methodwasmeasured independently by the average
Ca RMSD value and the average native overlap of all
the models in the benchmark. The compared
methods included the CE structure-based alignment,
the initial alignment for Moulder-EM by profile.scan,
and the fiveMoulder-EM protocols, where ([w1,w2] is
[1,0], [1,1], [1,2], [1,8], and [0,1]).
Figure 2. Comparison of the alignment accuracies
achieved by the following methods: profile–profile
sequence alignment by the profile.scan command of
MODELLER-8 (initial); structure-based alignment (CE),
Moulder-EM with five different weight combinations
([w1,w2]) defining the fitness function (Table 1). (a) The
difference between the average native overlaps
(measured in %). (b) The difference between the average
Ca RMSDs (measured in Å). Upper diagonal: gray and
white squares indicate pairs of protocols whose perform-
ances are and are not statistically significantly different at
the confidence level of 95%, respectively. Lower diagonal:
the intensity of gray is proportional to the accuracy
difference between the compared methods.
Results

Accuracy of models refined by Moulder-EM

To test the Moulder-EM protocol, we created a
benchmark of 20 target–template protein pairs,
related at less than 31% sequence identity that
vary in fold and size. The initial alignments for each
of these pairs were obtained with the profile–profile
alignment method. They were refined by five
Moulder-EM protocols with different weights
(w1 and w2) for the statistical potential Z-score (Zs)
and the density-fitting Z-score (Zc) in the fitness
function. The five weight sets were chosen to
sample reasonable combinations of the statistical
potential and density-fitting scores. The accuracies
of the highest-scoring initial models and the refined
models were quantified by the Ca RMSD value and
native overlap (Table 1; Figures 2 and 3). The
Student’s t-test shows that allMoulder-EM protocols
guided by a combination of the statistical potential
and density-fitting scores (i.e. [w1,w2] is [1,1], [1,2],
and [1,8]) resulted in models with significantly
better Ca RMSD and native overlap compared to the
initial models and to the final models based on the
fitness function dependent only on the statistical
potential (i.e. [w1,w2] is [1,0]) (Figure 2). Even
moulding with the fitness function dependent
only on the density-fitting score ([w1,w2] is [0,1])
resulted in a significant improvement in Ca RMSD
relative to the initial models and to the final models
based on the fitness function dependent only on the
statistical potential.

Based on the initial native overlap and Ca RMSD
value, the 20 targets in the benchmark were divided
into two groups, “difficult” and “easy”. The difficult
group includes the targets with an initial native
overlap %70% and Ca RMSD R5 Å, while the easy
group includes targets with native overlap O70%
and Ca RMSD !5 Å; there are no cases with native
overlap %70% and Ca RMSD !5 Å (Table 1). Both
the difficult and easy targets exhibited improve-
ments in the native overlap as well as the Ca RMSD
values for all tested weights of the statistical
potential and density-fitting Z-scores; however,
due to poor initial alignments, the improvements
upon refinement are larger for the difficult group
than for the easy group. On average, modeling of
the difficult group based on the fitness function
dependent only on the statistical potential did not
result in any significant improvement in the native
overlap and the Ca RMSD (51.8% to 52.4% and 8.0 Å
to 7.7 Å, respectively). In contrast, modeling based
on the fitness function dependent only on density
fitting improved the native overlap from 51.8% to
59.9% and the Ca RMSD value from 8.0 Å to 6.5 Å.

In both the difficult and easy groups, theMoulder-
EM protocol guided by a fitness function consisting
of the statistical potential Z-score and the density-
fitting Z-score with weights of 1 and 2, respectively,
performed best on average among all five tested
protocols (Table 1; Figure 2). The native overlap and
the Ca RMSD of the final models in the difficult



Figure 3. Ca RMSD of the highest-ranking model at
each iteration ofMoulder-EM versus its fitness function (F).
The results are presented for three sample target–
template pairs ((a)–(c)). Each symbol represents a fitness
function with different weights ([w1,w2]) for the statistical
potential Z-score and the density-fitting Z-score, as
indicated. R is the Pearson’s correlation coefficient.
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group were improved from 51.8% to 65.7% and
from 8.0 Å to 6.3 Å, respectively. In contrast, the
improvements for the easy targets were smaller
(from 81.8% to 84.7% in the native overlap and
from 4.1% to 3.6% in the Ca RMSD) because the
initial alignments were already close to the CE
structure-based alignments. In fact, in some cases,
the final models are better than the models
calculated using the structure-based alignment,
because of more accurate loop modeling. For
instance, for 1ten modeling based on 3hhrB, the
final model has 92.2% native overlap and 3.7 Å Ca

RMSD, while the model based on the CE structure-
based alignment has only 89.9% native overlap and
4.0 Å Ca RMSD (Table 1). In modeling 1ivg based on
1nsbA, the final model and the model from the CE
structure-based alignment have 86.9% and 84.3%
native overlap and 3.5 Å and 4.3 Å Ca RMSD,
respectively. While none of the model assessment
criteria used in this work allow us to predict
whether a given target-template pair will be easy
or difficult, only one initial alignment (livg-lnsbA,
in the easy group) becomes slightly worse as a
result of the refinement by Moulder-EM with the
optimal weights for the statistical potential and
density-fitting scores in the fitness function (i.e.
[w1,w2] is [1,2]).

Sample model optimization

To illustrate the Moulder-EM optimization proto-
col, we describe the improvement in the model of
8i1b based on its 14.1% sequence identity to 4fgf
(Table 1; Figures 4 and 5). Using the optimal
Moulder-EM protocol [w1, w2] is [1,2], the models
generally become more accurate during the itera-
tive process (Figure 4): while the highest-ranking
initial model (iteration 0) has a native overlap of
36.1% and a Ca RMSD of 9.1 Å, the highest-ranking
model in the last iteration (iteration 25) has a native
overlap of 68.1% and a Ca RMSD of 5.2 Å. The
corresponding density-fitting Z-scores of these
models are K1.6 and 2.8, respectively. Unfortu-
nately, due to limitations of the fitness function, it is
generally not possible to select the most accurate
model at any iteration. This problem is ameliorated
by the composite model assessment score (Z 0) used
in the final model selection (see Theory). The
composite score Z 0 selects a model from the entire
population of the models from all iterations that is
generally more accurate than the model selected
by the fitness function in the last iteration, in
agreement with previous experience.31 For
example, in the modeling of 8i1b based on 4fgf,
the most accurate model in the population has a
native overlap of 59.0%, 72.2%, and 75.0% for the
weights of [1,0], [1,2], and [0,1], respectively.
Although the model with the best fitness function
score in the last iteration has a native overlap of
only 43.1%, 68.1%, and 61.1%, the final model based
on the composite score Z 0 has a native overlap of
48.6%, 69.4%, and 61.1%, respectively (Figure 4;
Table 1).

The effect of map resolution on model accuracy

In cryoEM, the resolution of the density map
often dictates what structural features can be
accurately inferred from it. To understand how
the resolution affects the Moulder-EM refinement
protocol, we looked at the accuracy of the final
models achieved by the fitness function (F)
and the composite model assessment score (Z 0)



Figure 4. (a) Native overlap and
(b) Ca RMSD of the highest-ranking
models at each iteration ofMoulder-
EM applied to the refinement of the
8i1b target model based on the 4fgf
template. The continuous lines
represent the model with the best
fitness function score, while the
broken lines represent the most
accurate model based on (a) the
native overlap and (b) Ca RMSD.
Each color represents a fitness
function with different weights
([w1,w2]) for the statistical potential
Z-score and the density-fitting Z-
score, as indicated.
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dependent on the density-fitting Z-score alone (Zc)
([w1,w2] is [0,1]), using density maps at different
resolutions (5, 10, 15, 20, and 25 Å) (Figure 6). We
also compared these results to the final model
achieved by the fitness function (F) and by the
composite model assessment score (Z 0) dependent
on the statistical potential Z-score alone ([w1,w2] is
[1,0]), which of course has no dependence on the
resolution of the cryoEM map.

In the three tested cases, if the resolution is better
than 15 Å, the Ca RMSDs (except for 2omf at 5 Å
Figure 5. Optimal fitting of different structures into the si
structure (8i1b) is shown in blue ((a)–(e)), the template (4fgf) i
model with the highest fitness function score (with weights o
fitting Z-score) in the first iteration (initial model) and the la
model with the best composite score is shown in (d) and the m
the native overlap of the template and the models, and Zc is th
9.4. The image was created with the molecular graphics prog
resolution) and the native overlaps of the final
models based on the density-fitting Z-score are
better or equal to those based on the statistical
potential Z-score. At 20–25 Å resolution, the accu-
racy of the refined models is generally comparable
to that based on a statistical potential alone. For the
easy target 2mta (where the best initial alignment
already corresponds to a model with 70.4%
native overlap), improvements over the initial
model are noticeable when using density maps at
5 Å and 10 Å resolution. Such improvements are
mulated 10 Å resolution density map of 8i1b. The native
n green (a), and the models are shown in red ((b)–(e)). The
f [1,2] for the statistical potential Z-score and the density-
st iteration is shown in (b) and (c), respectively. The final
odel from the CE structure-based alignment in (e). NO is
eir density-fitting Z-score. The Zc of the native structure is
ram Chimera.66



Figure 6. (a) Native overlap and (b) Ca RMSD of the final model with the best composite score as a function of the
resolution. The model at “zero” resolution was selected from a population evolved via a fitness function that was
dependent only on the statistical potential Z-score ([w1,w2] is [1,0]), while the remaining models at different resolutions
were selected from a population that was evolved by a fitness function that is dependent on the density-fitting Z-score
alone ([w1,w2] is [0,1]).
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less noticeable at lower resolution (worse than
20 Å). For the easy target 1et0, fitting into the 5 Å
resolution map improved the native overlap even
beyond that of the model from the CE structure-
based alignment (90.1% versus 87.4%). Conversely,
the final model for the difficult target 2omf
improved using the lower-resolution maps, while
it deteriorated using the highest-resolution map
(the initial model has 40.2% native overlap and 8.1
Ca RMSD). At 15 Å resolution, the native
overlap and Ca RMSD improved to 53.8% and
6.8 Å, respectively, while at 5 Å resolution, they
deteriorated to 36.9% and 11.0 Å, respectively. We
note in passing that for the standard fitness function
([1,2]), the native overlap improved to 51.7% and
the Ca RMSD to 7.5 Å even with the 5 Å resolution
map.

Modeling of RDV P8 upper domain using an
experimentally determined cryoEM density map

Moulder-EM was applied to the upper domain of
the RDV P8 capsid protein (46 kDa). The density
map of the whole virus at 6.8 Å resolution (EMDB
code: 1060)60 as well as the crystal structure at 3.5 Å
resolution (PDB code: 1uf2)61 are available. While
no statistically significant sequence similarity can
be found between P8 and other proteins of
known structure, a structural homolog from a
related virus, BTV VP7, is known (PDB code:
1bvp).64 In particular, the upper domains of P8
and VP7 share a b sandwich fold. The highest-
ranking initial model of P8 based on VP7 had a
native overlap of 36.7% and a Ca RMSD of 8.7 Å.
Using the fitness function and the composite model
assessment score that performed best in the bench-
mark [w1,w2] is [1,2], the native overlap improved to
53.3% and the Ca RMSD to 6.0 Å. The Moulder-EM
improvement over the initial model is substantial,
in particular in the positions of the secondary
structure elements (Figure 7(a)). Nevertheless,
there is still room for further improvement: the
best possible model corresponding to the CE
alignment of the two structures has 84.2% native
overlap and 5.3 Å Ca RMSD. Although some of the
loops do not fit the density well (primarily due to
the errors in the target–template alignment), the
final model fits the cryoEM density map better than



Figure 7. Application of Moulder-EM to the experimentally determined cryoEM density map of RDV P8 upper
domain. (a) The secondary structure segments in the native structure, the initial model, and the final model are
indicated in red (a helix), blue (3-10 helix), and green (b-strand) as assigned by the Stride web server.67 (b) The template
(1bvp, green) and the native structure (1uf2, blue) fitted into the 6.8 Å resolution cryoEM density map of P8 are shown in
(1). The model from the CE structure-based alignment (red) is shown in (2). The final model (red) is shown in (3). NO is
the native overlap of the model and Zc is the density-fitting Z-score. The Zc of the native structure is 5.0. The image was
created with the molecular graphics program Chimera.66
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either the template structure or the model from the
CE structure-based alignment (the density-fitting
Z-scores are 1.4, 1.2, and 1.0, respectively)
(Figure 7(b)).
Discussion

“Moulding” and density fitting of comparative
models

We recently showed that the density-fitting score
at intermediate resolution is highly correlated with
the accuracy of the model; that is, one of the most
accurate models can usually be identified based on
the quality of its fit into the density map.35Here, we
took the next step from ranking models by fitting
into a cryoEM density map to refining an initial
structure by iterative modeling and fitting into a
cryoEM density map. Such a refinement is particu-
larly needed in comparative modeling of remotely
related proteins where the sequence-structure
alignment between the target sequence and the
template structure represents a major source of
errors in the target model; the alignment errors
result in approximately half of the total error in
comparative models, the rest of the error originat-
ing from our inability to model inserted segments
(e.g. loops) and smaller distortions in the correctly
aligned segments. The alignment errors are also
frequent. More than half of the detectably related
sequence-structure pairs share less than 30%
sequence identity. At 25% sequence identity,
w20% of residues are already misaligned.28,29

Here, we used the “information” encoded in the
cryoEM density to improve the accuracy of models
refined by an iterative alignment, model building,
and model assessment protocol (moulding) guided
by a fitness function that is dependent on the
cryoEM density map as well as a statistical potential
(Moulder-EM).

Moulder-EM was tested against a benchmark set
of 20 target–template pairs of known protein
structures that share less than 32% sequence
identity (14% on average) (Table 1). This benchmark
contained proteins varying in size, fold type, and
the accuracy of the initial alignment. For the
benchmark targets, the cryoEM density maps
were simulated at 10 Å resolution, which is
achievable in single particle cryoEM. Relative to
the models based on the best existing sequence
profile alignment methods, the percentage of Ca
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atoms that are within 5 Å of the corresponding Ca

atoms in the superposed native structure increases
on average from 52% to 66% (difficult cases; Table 1
and Figure 2), which is half-way between the
starting models and the models from the best
possible alignments (82%). Even cryoEM maps at
resolution as low as 20 Å are often more useful than
the statistical potentials derived from known
atomic structures (Figure 6).

Scoring function and sampling

As for any optimization method, the accuracy of
Moulder-EM is in principle, limited both by the
accuracy of the scoring function (i.e. its ability to
pick the most accurate structure among the
alternatives) and the thoroughness of the optimizer
(i.e. its ability to generate an ensemble of models
that includes accurate solutions). Next, we discuss
both of these potential bottlenecks.

It was previously shown that moulding
compares favorably with two of the most success-
ful sequence alignment methods, PSIBLAST33 and
SAM (version 3.3.1).34 However, due to the
limitations in the ranking of models by the original
fitness function consisting of a statistical poten-
tial,31 the most accurate models created during the
iterative search could not be identified. By adding
the density-fitting score to the fitness function (F)
and to the composite model assessment score (Z 0)
of the final model selection, Moulder-EM improved
upon this limitation, resulting in significantly more
accurate alignments and models than the original
Moulder program (Table 1; Figure 2). For the tested
proteins with poor initial alignments, Moulder-EM
was able to reach up to 92% improvement in the
native overlap (from 36.1% to 69.4% for 8i1b-4fgf)
and 50% in the Ca RMSD (from 8.9 to 4.4 Å for
1cauB-1cauA). Furthermore, Moulder-EM was able
to improve on targets with very accurate initial
alignments, approaching and sometimes even
surpassing the structure-based alignments (e.g.
1occA-1fftC).

Even when one of the two Z-scores in the fitness
function performed significantly better than the
other (e.g. 1ten-3hhr), the combination of both
Z-scores performed as well as the best individual
Z-scores (Figure 3). This fact is consistent with our
previous observation that the density fitting and the
statistical potential score generally capture different
features of the structure.35 The density fitting score
is likely to perform better when the alternative
models have different shapes (e.g. different loop
conformations and lengths), whereas the statistical
potential score is expected to performwell when the
best-assessed model is accurate and its assessment
does not suffer from the lack of neighboring
subunits. Therefore, the utility of the two Z-scores
in the fitness function varies depending on the
accuracy of the initial alignment and the target
structure. While it is difficult to predict in advance
which combination of the scores will produce the
most accurate models, the benchmarking shows
that the sum of the statistical potential and density
fitting Z-scores with weights of 1 and 2, respect-
ively, generally works best. This optimal fitness
function generally improves the final model relative
to the starting model even when the density fitting
or statistical potential scores on their own result in
lower accuracy (Table 1).
Although the fitness function of Moulder-EM

is more accurate than that of Moulder (Figure 4), it
is far from perfect. The final model selected by the
composite score is generally still not the most
accurate model in the sample of generated models.
It is necessary to improveMoulder-EM by increasing
the accuracy of the statistical potential score and
adding new model assessment scores (D. Eramian
et al., unpublished results).
The sampling protocol ofMoulder-EM is identical

with that of Moulder (Theory). It typically samples
approximately 7500 unique alignments over 25
iterations. The possibility that more thorough
sampling would result in more accurate models
cannot be excluded and is likely for calculations
with moderately high-resolution maps (5 Å) start-
ing with inaccurate alignments (below). However,
at 10 Å, the present optimization protocol always
producedmodels that scored better than the models
from the CE structure-based alignments, highlight-
ing again that Moulder-EM is limited primarily by
the accuracy of its scoring function, not the
completeness of its sampling.
Currently, the Moulder-EM protocol is a relatively

slow process, taking several hours on a multi-
processor Linux cluster. When compared to the
time and cost it takes to produce a subnanometer
resolution structure of a macromolecular complex
with cryoEM, however, this time is negligible.
Moulder-EM will be available in the MODELLERK9
release.

Resolution of the cryoEM map

To analyze the dependence of the model accuracy
on the map resolution, we modeled three of the
targets with maps at resolutions from 5 Å to 25 Å
(Figure 6). It is difficult to set the upper limit on the
resolution of a cryoEM map that can still be helpful
in the refinement of a comparative model by
Moulder-EM based on our limited tests. However,
it appears that cryoEM density maps at 25 Å
resolution do not provide any significant advantage
over the statistical potential score alone, although
they do not deteriorate model accuracy either. If the
initial alignment is inaccurate, even the 20 Å
resolution density map will improve the model
because the large alignment errors can be easily
detected by the mismatch of the shape densities.
Using the higher resolution map (i.e. 5 Å), the
density-fitting score could improve the model
accuracy beyond the accuracy of the model from
the structure-based alignment because the detailed
structural features in the density may contain
more potent information than the biased template
structure.
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When the initial models are relatively accurate,
the higher-resolution density maps (5–10 Å) result
in more accurate models than the lower-resolution
maps, because a higher-resolution map contains
fine features that allow the optimization to find a
more accurate model (scoring-limited regime). In
contrast, when the initial models are inaccurate, the
lower-resolution density maps (10–20 Å) result in
more accurate models than the higher-resolution
maps, because it is easier to find the model with the
best fit to a lower-resolution map than a higher-
resolution map (optimizer-limited regime). This
result reflects the different types of errors that can
be minimized with the aid of density maps at
different resolutions. With higher resolution maps,
finer structural detail can be seen and thusMoulder-
EM reduces smaller alignment errors. Lower
resolution maps (10–20 Å), on the other hand,
capture more global features of the structure, and
thus Moulder-EM can reduce only larger alignment
errors that result in large rigid-body shifts.

Rice dwarf virus P8 upper domain

To test Moulder-EM with an experimentally
determined cryoEM map, we modeled the upper
domain of the P8 capsid protein from the 6.8 Å
resolution structure of RDV (Figure 7). P8 is a fairly
typical example of the type of a structure obtained
from cryoEM maps of macromolecular assemblies.
These assemblies likely contain multiple protein
components, some of which are also determined in
isolation at atomic resolution or at least have a
known homolog of defined structure. However, as
in the case of RDV, this homolog is often only
remotely related by sequence, making it difficult to
calculate an accurate comparative model. The
Moulder-EM protocol improves upon this limitation
by iterating through simultaneous model building
and fitting into the cryoEM density map, resulting
in increasingly refined alignments and correspond-
ing models.
Conclusion

In summary, we showed that adding the cryoEM
density-fitting score to the fitness function of
an iterative alignment and comparative model
building process generally decreases alignment
errors dramatically, even with density maps at
w15 Å resolution. Moreover, the resulting models
are more suitable for constructing the pseudo-
atomic models of whole macromolecular
assemblies than the experimentally determined
structures of the homologs. Given the increasing
number of macromolecular machines under inves-
tigation using cryoEM and the rising number of
comparative models that can be constructed with
useful accuracy, the scope for the application of
integrated comparative modeling and cryoEM is
large.65 In the future, combined comparative
modeling and cryoEM density fitting is likely to
benefit from a more accurate fitness function, more
complete sampling of alignments, as well as
exploring the conformations of loops and relative
orientations of smaller segments of structure in
addition to the target-template alignment.
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