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Abstract

We explore structural characterization of protein assemblies by a combination of electron cryo-microscopy (cryoEM) and com-
parative protein structure modeling. Specifically, our method finds an optimal atomic model of a given assembly subunit and its
position within an assembly by fitting alternative comparative models into a cryoEM map. The alternative models are calculated
by MODELLER [J. Mol. Biol. 234 (1993) 313] from different sequence alignments between the modeled protein and its template
structures. The fitting of these models into a cryoEM density map is performed either by FOLDHUNTER [J. Mol. Biol. 308
(2001) 1033] or by a new density fitting module of MODELLER (Mod-EM). Identification of the most accurate model is based
on the correlation between the model accuracy and the quality of fit into the cryoEM density map. To quantify this correlation,
we created a benchmark consisting of eight proteins of different structural folds with corresponding density maps simulated at five
resolutions from 5 to 15 Å, with three noise levels each. Each of the proteins in the set was modeled based on 300 different align-
ments to their remotely related templates (12–32% sequence identity), spanning the range from entirely inaccurate to essentially
accurate alignments. The benchmark revealed that one of the most accurate models can usually be identified by the quality of its
fit into the cryoEM density map, even for noisy maps at 15 Å resolution. Therefore, a cryoEM density map can be helpful in improv-
ing the accuracy of a comparative model. Moreover, a pseudo-atomic model of a component in an assembly may be built better with
comparative models of the native subunit sequences than with experimentally determined structures of their homologs.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The native structures of the individual proteins do
not yield the ‘‘full picture’’ of the functional assemblies,
such as viruses, ion channels, ribosomes, proteasomes,
and other molecular machines (Alberts, 1998; Russell
et al., 2004; Sali et al., 2003). To this end, the structures
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of whole assemblies are needed. One of the methods that
can be applied to structural characterization of whole
assemblies is electron cryo-microscopy (cryoEM) of sin-
gle particles. Single-particle cryoEM can determine the
structures of macromolecular complexes with molecular
weights larger than approximately 150 kDa in different
functional states and at increasingly higher resolutions
(Frank, 2002; Ludtke et al., 2004; Zhou and Chiu,
2003). It is anticipated that the resolution of many sin-
gle-particle cryoEM structures determined in the imme-
diate future will be in the range of 5–10 Å.
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While it is almost impossible to determine an atom-
ic model only from density maps at 5–10 Å resolution,
a wealth of information, such as spatial organization
of domains, locations of long a-helices and large
b-sheets (Jiang et al., 2001) as well as macromolecular
dynamics (Ming et al., 2002; Tama et al., 2002; Wang
et al., 2004), can still be obtained from such maps
(Russell et al., 2004). Moreover, it has been shown
that docking atomic-resolution structures of individual
subunits into a cryoEM density map of the intact
assembly can result in a useful pseudo-atomic model
of the whole assembly (Zhou et al., 2001). Such mod-
els can yield significant insights into the structure and
function of single proteins and their complexes (Golas
et al., 2003; Kostyuchenko et al., 2003; Shin et al.,
2003).

Manual docking tools (Beckmann et al., 2001;
Beroukhim and Unwin, 1995; Hewat et al., 1998;
Hoenger et al., 1998; Rayment et al., 1993; Sosa et al.,
1997; Spahn et al., 2001; Voges et al., 1994), which are
limited by the experience of the user, are slowly being
replaced by more robust and objective docking strate-
gies (Roseman, 2000; Wriggers and Chacon, 2001). The
most widely used approach relies on a systematic
maximization of the cross-correlation between the model
density and the density map. In some earlier studies, this
method was employed for local rigid-body refinements of
the manual docking solutions, in both reciprocal space
(Cheng et al., 1995; Hewat and Blaas, 1996; Kolatkar
et al., 1999; Wikoff et al., 1994) and real space (Grimes
et al., 1997; Stewart et al., 1993). Recently, routines that
rely on a more thorough search over three translational
and three rotational degrees of freedom in real space have
been introduced, including COAN (Volkmann and
Hanein, 1999), DOCKEM (Roseman, 2000), EMFIT
(Rossmann, 2000), COLORES (Chacon and Wriggers,
2002; Wriggers et al., 1999), FOLDHUNTER (Jiang
et al., 2001), the grid-threading Monte Carlo method
(Wu et al., 2003), and 3SOM (Ceulemans and Russell,
2004).

Unfortunately, experimentally determined atomic-
resolution structures of the isolated subunits in the
complexes are frequently not available. In addition,
even if they are available, the induced fit may severely
limit their utility in the reconstruction of the whole
assembly. In such cases, it might be possible to obtain
useful models of the subunits in the correct structural
state by comparative protein structure modeling
(Baker and Sali, 2001; Jacobson and Sali, 2004;
Marti-Renom et al., 2000). For example, partial
pseudo-atomic models of the whole yeast (Beckmann
et al., 2001; Spahn et al., 2001) and Escherichia coli

ribosomes (Gao et al., 2003) were obtained by fitting
into cryoEM maps comparative protein models
calculated from the crystallographic structures of the
prokaryotic ribosomal subunits.
Comparative modeling predicts the structure of a tar-
get protein sequence by (i) finding one or more related
proteins with known structures (i.e., templates), (ii)
aligning the target sequence to the template structure,
(iii) building a model based primarily on the alignment
from the previous step, and (iv) assessing the model
(Marti-Renom et al., 2000). It is becoming increasingly
applicable and accurate, in large part because of the
structural genomics initiative. The structural genomics
initiative aims to solve the structures of most protein
families by X-ray crystallography or NMR spectros-
copy, such that most of the remaining proteins can be
modeled with useful accuracy based on their similarity
to the known structures (Baker and Sali, 2001; Marti-
Renom et al., 2000; Pieper et al., 2004; Sali and
Kuriyan, 1999). The largest errors in comparative mod-
els result from incorrect sequence alignment and fold
assignment, especially in models of the sequences that
are only remotely related to their templates (i.e., at less
than 30% sequence identity). Most pairs of detectably
related protein sequences and structures are currently
related at less than 30% sequence identity, with corre-
spondingly large alignment errors (i.e., >20% of misa-
ligned residues). Other errors include rigid-body shifts,
errors in the modeling of loops, and errors in side-chain
packing (Marti-Renom et al., 2000). It is usually possi-
ble to generate a set of models based on alternate tem-
plates and alignments that vary in the orientation of
domains, packing of secondary structure elements, and
conformation of loops. Selecting the best model from
a model set can then be attempted through various
methods for model assessment (Melo et al., 2002; Sippl,
1993).

Here, we evaluate the utility of cryoEM density
maps at 5–15 Å resolution in assessing comparative
protein structure models with alignment errors. We
describe a method for fitting a given rigid model into
a density map, implemented in MODELLER (Sali
and Blundell, 1993) (Mod-EM) and an improved ver-
sion of FOLDHUNTER (Jiang et al., 2003). This pro-
cedure is then tested with the aid of a benchmark data
set, consisting of eight proteins of different folds with
300 different models each. In addition, we describe the
criteria used to assess the correlation between the geo-
metrical accuracy of a model and the quality of its fit
into a given density map. Furthermore, we quantify
the ability of Mod-EM and FOLDHUNTER to find
the most accurate models by the quality of their fit
into density maps at different resolutions and noise
levels. We also compare model assessment by density
fitting with model assessment by statistical potentials
of mean force as implemented in the ProsaII program
(Sippl, 1993). Finally, we discuss the implications of
the results for comparative protein structure modeling
and for improving the interpretation of cryoEM den-
sity maps.
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2. Methods

2.1. Docking a given model into a density map by

Mod-EM

A rapid correlation-based method for docking a
probe model into a cryoEM density map was imple-
mented in MODELLER-8 (Mod-EM), which will be
available soon at http://salilab.org/modeller.

The cryoEM density map is represented by intensities
at points on a cubic grid in the X-PLOR format (Brün-
ger, 1992). The spacing between the points on this grid,
typically 1 Å, is independent of the map resolution.

Before fitting, the probe model is converted into
probe density, qprobe (r). Each atom in the probe model
can be represented by one of several atomic density
functions, including the Gaussian function (Jiang
et al., 2003), the hybrid Gaussian/sphere model (Pittet
et al., 1999), and the uniform sphere model. All of the
tested forms performed similarly in our benchmark
(data not shown), thus we only present the results for
the simplest model of atomic density, the uniform
sphere model:

qprobeð~rÞ¼m½f ðj~r�~ajÞ�; f ðj~r�~ajÞ¼
1 for j~r�~aj6R;

0 for j~r�~aj>R;

�

ð1Þ
where m is the atomic mass, ~a is the atomic position,
j~r �~aj is the distance of point~r from the atomic center,
and R is the atomic van der Waals radius (MacKerell
et al., 1998). The uniform sphere model of an atom is
the sphere of uniform density with the radius equal to
the van der Waals radius of the atom.

The best fit between the probe model and the cryoEM
density map is obtained by changing the position of the
model so as to maximize the cross-correlation between
the probe density and the cryoEM density. The cross-
correlation is measured by a normalized fitting score:

C ¼
PM

i¼1q
EM
i

PN
j¼1q

probe
i;j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1 qEM
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probe
i;j
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where M is the number of grid points in the cryoEM
density map covered by the probe density, qEM

i is the
intensity at grid point i of the cryoEM density map, N
is the number of atoms in the probe model, qprobe

i;j is
the atomic density of atom j at grid point i (Eq. (1)),
and

PN
j¼1q

probe
i;j is the total probe density at grid point i.

Optionally, the cross-correlation can be approxi-
mated by a more computationally efficient un-normal-
ized fitting score:

C0 ¼
XN
j¼1

mjq
EM
i ; ð3Þ
where N is the number of atoms, qEM
j is the cryoEM

density at the grid point closest to atom j and mj is its
atomic mass. This approximation requires that the grid
spacing for the cryoEM density is smaller than the
atomic radii in Eq. (1). This criterion is satisfied here
by using the cryoEM density grid spacing of 1 Å.

Three different protocols were implemented for the
optimization of the fitting score C in an attempt to bal-
ance speed and accuracy of finding a good optimum of
C. The first protocol, ‘‘center-rotation,’’ is used if the
cryoEM map density describes the probe model only
(i.e., they have the same size). For example, this condi-
tion applies when the probe model corresponds to a
large protein or when a density map of a large complex
is segmented into subunit maps. The protocol begins by
translating the center of mass of the probe model to the
center of mass of the cryoEM density map. A search
over the three rotational Euler angles (/,h,w) is then
performed to maximize C 0. The search begins by calcu-
lating C 0 for all combinations of the Euler angles in steps
of 30�. Next, the best fit from this coarse search is re-
fined by a finer local search in all three Euler angles.
The local refinement is repeated iteratively three times,
with the final step of 0.24�. For a protein of 150 residues,
the whole calculation typically takes less than 0.5 min on
a 3.0 GHz Intel Xeon processor.

The second protocol, ‘‘Monte Carlo,’’ is used when
the probe model is smaller than the cryoEM density
map. This condition applies when the probe model cor-
responds to one of the molecular components of the
complex. The protocol starts with an arbitrary superpo-
sition of the probe model and cryoEM densities (typi-
cally, superposing their centers of mass), and proceeds
by a fixed number of Monte Carlo steps, typically
250–500. A single Monte Carlo step consists of (i) a ran-
dom translation of the probe for one grid unit of the
cryoEM density map, (ii) a search for the three Euler an-
gles that maximize C 0, using the ‘‘center-rotation’’ pro-
tocol described above, and (iii) an application of the
Metropolis criterion (Metropolis and Ulam, 1949). For
the calculation of the Metropolis criterion, the overlap
between the probe model and the cryoEM density map
is quantified by C. A typical acceptance rate for these
Monte Carlo steps is 15–20% at the temperature of
5000 units. For a probe model of 80–100 residues
(323 Å3) and a cryoEM density map of 963 Å3, the calcu-
lation takes approximately 1 min.

The third protocol, ‘‘scanning Monte Carlo,’’ is used
when the probe model is significantly smaller (635%)
than the cryoEM density volume. This condition applies
when the probe model corresponds to one of the minor
molecular components of the complex. The cryoEM
density map is divided into cells similar in volume to
the probe. For each such cell, a local search is performed
if the randomly oriented probe density centered within
the cell has a positive C. The local search starts with

http://salilab.org/modeller
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the probe positioned at the center of the cell. The opti-
mal orientations at this position and all 26 (i.e.,
3 · 3 · 3 � 1) neighboring grid points are obtained suc-
cessively by enumerating all three Euler angles as de-
scribed for the ‘‘center-rotation’’ protocol above. A
Monte Carlo criterion is applied to each one of these
27 optimal orientations. Within each cell, such a search
is repeated 25–50 times. The calculation typically takes
�10–15 min. When the cryoEM density map covers only
the probe model, this protocol can be used for a transla-
tional and rotational refinement of the initial superposi-
tion of the centers of mass. This calculation typically
takes �1–2 min.

2.2. Improved FOLDHUNTER (FOLDHUNTER.py)

FOLDHUNTER also relies on maximizing the cross-
correlation between a probe model and a cryoEM
density map (Jiang et al., 2003). The probe model is first
transformed into a probe density map, over the same
volume as the cryoEM density map regardless of their
relative sizes. Next, an exhaustive search of Euler angles
is performed at each grid point of the cryoEM density
map. Previous versions of FOLDHUNTER successfully
fit both X-ray and cryoEM densities into low to interme-
diate resolution cryoEM densities (Bowman et al., 2003;
Jiang et al., 2003; Mao et al., 2004; Zhou et al., 2001).
However, that version of FOLDHUNTER depended
on separate EMAN programs (Ludtke et al., 1999) for
data manipulation. Recently, a faster version of FOLD-
HUNTER (FOLDHUNTER.py) was implemented.
FOLDHUNTER.py performs a coarse initial fit with
probe and density maps shrunk by a factor of 2, then
produces the final fit by refining the initial solution with
the maps at the original size. A typical calculation takes
10 min for a 963 Å3 cryoEM density map on a 3.0 GHz
Intel Xeon processor, which is approximately five times
faster than the previous versions of FOLDHUNTER.
The new version of FOLDHUNTER is available in
the AIRS package distributed with EMAN (http://
ncmi.bcm.tmc.edu/~stevel/EMAN/doc/).

2.3. The benchmark for testing the fitting programs

We created a benchmark for testing the ability of
Mod-EM and FOLDHUNTER to rank a number of
probe models of the same protein by their geometrical
accuracy. This benchmark consists of eight pairs of pro-
teins of known structure sharing between 12 and 32%
sequence identity. Their sizes range from approximately
100 to 300 residues and they represent all of the major
fold types (i.e., a, b, a + b, and a/b) (Levitt and
Chothia, 1976).

Using the native structure for each of the eight probe
proteins, five noiseless cryoEM density maps were simu-
lated at 5, 8, 10, 12, and 15 Å resolution, employing the
PDB2MRC and PROC3D programs in EMAN (Ludtke
et al., 1999). The exact choice of sample resolutions is
not important because the results do not change signif-
icantly over a few angstroms. The density map was con-
structed by summing Gaussian functions for all atoms in
the probe protein (Ludtke et al., 1999). The standard
deviation (i.e., standard width) of the Gaussian was con-
stant for all atoms, and equal to half of the resolution of
the density map. To simulate cryoEM density maps
more realistically, two additional sets of maps were cal-
culated with flatband noise at 0.25 r and 0.75 r, where r
is the standard deviation of the simulated density map
(Ludtke et al., 1999). Thus, the entire benchmark con-
tains 120 simulated cryoEM density maps.

For each of the eight test pairs, 300 alignments span-
ning approximately 0–100% correctly aligned positions
were created by a modified version of MOULDER
(John and Sali, 2003). A pair of aligned positions is
aligned correctly if they match the structure-based align-
ment calculated with the program CE (Shindyalov and
Bourne, 1998). A single comparative protein structure
model of the probe sequence, containing all non-hydro-
gen atoms, was built for each alignment by MODEL-
LER-6, applying the default model building routine
‘‘model’’ with fast refinement (Sali and Blundell, 1993).

For each of the eight test proteins, an ‘‘ideal’’ model
was built based on the structural alignment of the target
and the template obtained by the CE program (Shindya-
lov and Bourne, 1998). The ‘‘ideal’’ models were either
identical or very close to the most accurate models in
the benchmark of 300 models defined above (the average
native overlap for the ideal and most accurate models is
85 and 86%, respectively).

The entire benchmark, including eight pairs of test
and template structures, the corresponding 2400 atomic
models, and the 120 cryoEM density maps are available
at http://salilab.org/modem.

2.4. Assessing model accuracy

Two criteria were used to assess the geometrical accu-
racy of the models of each protein (John and Sali, 2003;
Marti-Renom et al., 2004). First, the root-mean-square
(RMS) error between the corresponding Ca atoms in
the model and the native structure was calculated upon
rigid-body least-squares superposition of all the Ca
atoms, as implemented in the SUPERPOSE command
of MODELLER. Second, the percentage of structurally
equivalent positions was defined as the percentage of the
Ca atoms in the model that are within 3.5 Å of the cor-
responding atoms in the superposed native structure
(‘‘native overlap’’). The 3.5 Å cutoff value is typically
used in evaluation of comparative models (Marti-Re-
nom et al., 2000), including the Critical Assessment of
Techniques for Protein Structure Prediction (CASP)
(Moult et al., 2003).

http://ncmi.bcm.tmc.edu/~stevel/EMAN/doc/
http://ncmi.bcm.tmc.edu/~stevel/EMAN/doc/
http://salilab.org/modem
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In addition, for each of the eight test proteins, their
native structure, their template structure, the 300 mod-
els, and the ‘‘ideal’’ model were characterized by the
optimal fitting scores for the simulated cryoEM maps
calculated from their native structures (15 maps in total,
one map at each of the five resolutions and three noise
levels). The optimal fits were obtained by both
Mod-EM (‘‘scanning Monte Carlo’’ protocol) and
FOLDHUNTER.

Finally, all models and native structures were also as-
sessed by a statistical potential Z-score, as implemented
in the program ProsaII (Sippl, 1993). The Z-score is the
difference between the statistical potential energy of the
model and the mean energy of many unrelated folds
onto which the same sequence is ‘‘threaded,’’ expressed
in units of the standard deviation of the energy distribu-
tion. The Z-score is proportional to the length of the
protein. For most experimentally determined protein
structures with �100 and �300 residues, the Z scores
are in the ranges of �8 to �4 and �10 to �6, respec-
tively (Sippl, 1993).
Fig. 1. Fitting of models into the native density maps at different
resolutions by Mod-EM (A) and FOLDHUNTER (B). The results are
shown for 1DXT at map resolutions of 8 Å (black points) and 12 Å
(red squares). The fitting score of the best fit between a probe model
and the map is plotted against the native overlap for the native
structure (large circle), the 300 comparative models, the template
structure (large triangle), and the ‘‘ideal’’ model (large square).
3. Results

Mod-EM and FOLDHUNTER were employed to
identify the most accurate comparative models by fitting
the alternative models of the same protein into the den-
sity maps of their corresponding native structures. The
accuracies of the two programs were tested by a bench-
mark consisting of eight known protein structures with
300 comparative models each. In addition, the accuracy
of identifying the most accurate models by a combina-
tion of the fitting and ProsaII scores was examined.

3.1. Ranking the models by fitting

As expected, the native structure had the highest fit-
ting score for all proteins at all tested resolutions, with
both Mod-EM and FOLDHUNTER (Figs. 1–3). The
difference in the fitting scores between the highest scor-
ing model and the native structure was smaller at lower
resolutions than at higher resolutions (Fig. 1). For
example, for 1DXT, the difference in the Mod-EM fit-
ting scores between the highest scoring model and the
native structure was reduced from 0.09 at 8 Å to 0.03
at 12 Å (Fig. 1). For FOLDHUNTER, the correspond-
ing reduction was from 0.10 to 0.06. At a given model
accuracy, the fitting score was higher at lower resolution
than at higher resolution (Fig. 1), as expected: At a high
resolution, only an extremely accurate model will over-
lap well with the map; at a low resolution, even an inac-
curate model will overlap relatively well with the map.
For both Mod-EM and FOLDHUNTER, the accuracy
of a model was correlated with the fitting score over the
whole range of accuracy, at all tested resolutions (5–
15 Å) and noise levels (0 r, 0.25 r, and 0.75 r) (Figs.
1–3). For example, for 10 Å cryoEM maps of 1LGA
and 1ONC, both fitting methods resulted in a Pearson
correlation coefficient (‘‘R2’’) between the native overlap
and the fitting score that is larger than 0.7 (Fig. 2).

Based on the RMS errors and native overlaps of the
most accurate models versus the best-fitting models,
both density fitting methods performed similarly in iden-
tifying native-like models (Table 1). At sub-nanometer
resolutions (5–10 Å), FOLDHUNTER assigned the
top score to one of the 15 most accurate models (out
of 300) for all eight test proteins, while Mod-EM did
so in seven cases. In this resolution range, the average
native overlap of the model with the highest Mod-EM
fitting score was better than 78%. This value is very close
to the best possible native overlap, corresponding to the
average native overlap of the most accurate models
(i.e., 85%). Even up to 12 Å resolution, the fitting meth-
ods selected a model within �1 Å RMS error of the



Fig. 2. Fitting of models into the native density map by Mod-EM and FOLDHUNTER. The results are shown for 1LGA (A,B) and 1ONC (C,D).
The fitting score of the best fit between a model and the map is plotted against the native overlap for the native structure (encircled) and 300
comparative models. Native density maps at 10 Å resolution without noise were used.

Fig. 3. Fitting of models into the native density maps at different noise levels by Mod-EM (A,C) and FOLDHUNTER (B,D). The results are shown
for 1BBH at the map resolution of 10 Å, calculated with two different noise levels: 0 r (A,B) and 0.75 r (C,D).
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most accurate model in most cases (six and seven of the
eight test proteins with Mod-EM and FOLDHUNTER,
respectively). In summary, although the fitting does not
always identify the most accurate model, the best-fitting
model is generally close to the most accurate model.

Mod-EM fitness score identified a more accurate
model than the ProsaII statistical potential Z-score
Table 1
Assessing models by fitting into the native density map at sample resolution

(A) Protein name RMS error of
the most accurate
model (Å)

Difference in the RMS e
accurate model

Noise level (r) R

5

Mod-EM

1CID 3.4 0.00 0
1MUP 3.3 0
1LGA 3.2 0
2CMD 2.5 1
1DXT 2.0 0
1BBH 2.5 0
1ONC 2.2 0
1C2R 3.4 1

Averagea 2.8 0.00 0
0.25 0
0.75 0

FOLDHUNTER

Averagea 2.8 0.00 0
0.25 0
0.75 0

(B) Protein name Native overlap of
the most accurate
model

The native overlap of th

Noise level (r) R

5

Mod-EM

1CID 0.73 0.00 0
1MUP 0.76 0
1LGA 0.86 0
2CMD 0.86 0
1DXT 0.94 0
1BBH 0.91 0
1ONC 0.92 0
1C2R 0.84 0

Average 0.85 0.00 0
0.25 0
0.75 0

FOLDHUNTER

Average 0.85 0.00 0
0.25 0
0.75 0

The best-fitting model has the highest fitting score with the density map. T
structure (A) and the highest native overlap (B) among all 300 models in the b
the model with the most significant ProsaII Z-score.

a Only the individual data points that lead to the first row of averages in M
shown.
for five out of the eight test proteins at sub-nanometer
resolution (Table 1). FOLDHUNTER was even more
successful, winning over ProsaII in seven cases (data
not shown). Even at 15 Å resolution, four of the
eight models identified by Mod-EM had a better na-
tive overlap than the best model selected by ProsaII
(Table 1).
s

rrors (Å) between the best-fitting model and the most ProsaII

esolution of the map (Å)

8 10 12 15

.1 0.1 0.1 0.1 0.1 1.2

.3 2.9 2.9 2.9 10.4 0.7

.9 0.9 0.9 0.9 0.9 0.0

.1 0.0 0.0 0.0 0.2 2.8

.5 0.0 0.0 0.0 0.0 0.6

.3 0.0 1.1 1.1 1.1 0.1

.3 0.3 0.3 0.0 0.8 0.4

.9 0.4 0.2 2.0 2.3 0.2

.7 0.6 0.7 0.9 2.0 0.7

.3 0.6 1.0 1.0 2.0

.7 0.6 0.8 0.8 2.0

.3 0.3 0.3 1.3 1.6 0.7

.3 0.3 0.5 1.4 1.7

.3 0.3 0.4 1.4 1.6

e best-fitting model ProsaII

esolution of the map (Å)

8 10 12 15

.69 0.71 0.71 0.71 0.71 0.59

.74 0.54 0.54 0.54 0.14 0.70

.80 0.80 0.80 0.80 0.80 0.86

.81 0.86 0.86 0.86 0.84 0.70

.91 0.91 0.91 0.91 0.91 0.91

.80 0.87 0.73 0.73 0.73 0.87

.89 0.89 0.89 0.91 0.81 0.87

.68 0.78 0.77 0.66 0.60 0.76

.79 0.80 0.78 0.77 0.69 0.79

.80 0.80 0.76 0.77 0.70

.79 0.79 0.78 0.77 0.69

.82 0.82 0.81 0.72 0.71 0.79

.82 0.82 0.80 0.72 0.69

.82 0.82 0.80 0.72 0.70

he most accurate model has the smallest RMS error from the native
enchmark. For the ProsaII column, the best model was predicted to be

od-EM are shown. Individual data points for FOLDHUNTER are not
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3.2. Effect of noise

Adding noise to the density maps (at the 0.25 r
and 0.75 r level) caused a small reduction in the accu-
racy of the best-fitting model and in the difference be-
tween the fitting scores of the highest scoring model
and the native structure, but did not affect the results
significantly (Fig. 3 and Table 1). For example, the cor-
relation between the native overlaps and the fitting
scores of 1BBH was similar at maps with the noise levels
of 0 r and 0.75 r, for both Mod-EM and FOLDHUN-
TER (Fig. 3). Both Mod-EM and FOLDHUNTER
performed similarly for maps with and without noise
(Table 1).

3.3. Fitting the template versus fitting the ‘‘ideal’’

model based on the correct alignment

For the eight probe proteins, the average fitting ranks
of the ‘‘ideal’’ models based on best possible alignments
(Section 2) are below 18, at sub-nanometer resolutions
(Table 2). In contrast, the average fitting ranks of the
template structures are above 48. At lower resolutions
(i.e., 12 and 15 Å), the template structure is sometimes
ranked higher than the ‘‘ideal’’ model, but the average
rank of the template is still lower than that of the ‘‘ide-
al’’ model. For Mod-EM, even at 15 Å resolution, the
Table 2
Assessing the ‘‘ideal’’ model and the template structure by fitting into the ta

Target—Template Native overlap
of the ‘‘ideal’’
model

Rank of th

5 8

Template ‘‘Ideal’’
model

Template ‘‘Id
m

Mod-EM

1CID—2RHE 0.73 68 15 82 16
1MUP—1RBP 0.76 72 60 69 42
1LGA—2CYP 0.86 9 4 14 30
2CMD—6LDH 0.86 34 1 24 2
1DXT—1HBG 0.94 69 1 132 2
1BBH—2CCY 0.91 34 1 72 3
1ONC—7RSA 0.92 110 3 133 3
1C2R—1YCC 0.86 63 12 93 10

Average 0.86 57 12 77 14

FOLDHUNTER

1CID—2RHE 0.73 73 16 92 24
1MUP—1RBP 0.76 160 17 229 21
1LGA—2CYP 0.86 42 8 12 15
2CMD—6LDH 0.86 8 1 21 1
1DXT—1HBG 0.94 10 2 18 2
1BBH—2CCY 0.91 4 1 9 2
1ONC—7RSA 0.92 79 2 105 6
1C2R—1YCC 0.86 8 5 31 7

Average 0.86 48 7 65 10

The rank is obtained by sorting the ‘‘ideal’’ model, the template structure, a
‘‘ideal’’ models for seven out of the eight probe proteins
are ranked by fitting among the best 50 models; in con-
trast, five out of the eight template structures are ranked
above 100. For example, the ‘‘ideal’’ model of 1DXT
and its template structure (1HBG) are ranked 2 and
132, respectively, based on Mod-EM fitting at 8 Å reso-
lution (Fig. 1). At 12 Å resolution, the corresponding
ranks are 2 and 139, respectively. Therefore, an accurate
comparative model of a protein based on an experimen-
tally determined atomic structure of a remotely related
homolog generally fits better into its density map than
the homolog itself.

3.4. Composite scoring

Despite the correlation between the fitting score and
the ProsaII Z-score (data not shown), these two scores
capture different aspects of a model. For example, differ-
ent models of 1MUP (Fig. 4A) have relatively similar
shapes, thus creating difficulties for the fitting score
(especially at lower resolution; cf., 1MUP at 15 Å in
Table 1), while the statistical potential could still benefit
from the different residue accessibilities and pairwise
residue distances. On the other hand, different models
of 1CID and 2CMD (Fig. 4B) have quite distinct shapes
due to the different locations of insertions and deletions,
thus allowing the fitting score to perform better than the
rget density map

e ‘‘ideal’’ model and the template structure

Resolution of the map (Å)

10 12 15

eal’’
odel

Template ‘‘Ideal’’
model

Template ‘‘Ideal’’
model

Template ‘‘Ideal’’
model

101 25 110 32 105 42
45 27 43 13 15 28
4 36 5 42 3 50
5 1 2 1 1 2

138 1 139 2 143 2
82 9 94 21 100 23
136 2 144 1 153 13
116 13 118 29 129 55

78 14 82 18 81 27

66 34 79 50 223 31
208 57 196 217 141 119
22 8 42 12 70 12
14 1 5 4 1 7
18 1 19 1 12 3
7 16 12 93 36 104

104 21 108 27 98 25
42 7 44 6 44 8

60 18 63 51 78 39

nd the 300 comparative models based on their fitting scores.



Fig. 4. Examples of optimal fitting of structures into density maps. (A) Fitting of the native structure and models of 1MUP by Mod-EM. The
resolutions of the maps without noise and the structures are indicated in the panels. (B) Fitting of the native structures and models of 2CMD and
1CID, as well as their templates (6LDH and 2RHE, respectively) by Mod-EM. The maps are all at 10 Å resolution without noise. The ranking of the
models based on the fitting score is indicated in parentheses. The figures were created with the molecular graphics program Chimera (Pettersen et al.,
2004).
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ProsaII Z-score. Therefore, we explored the possibility
of improving the identification of the most accurate
model by relying on both the fitting score and the Pro-
saII Z-score. To combine the two scores for a given
model, we first calculated a fitting Z-score by expressing
the fitting score relative to the average and standard
deviation of the fitting scores for all 300 models of the
same protein [ZC = (C � ÆCæ)/rC]. The fitting and Pro-
saII Z-scores were then added with unit weights to get
a combined score. The combined score performed better
than either of the two individual scores. The average dif-
ference between the RMS errors of the model with the
best combined score and the most accurate model
dropped below 1 Å at all resolutions. Even at 15 Å res-
olution, the native overlap was still above 75%. At sub-
nanometer resolutions, the best scoring models were
within 0.3 Å RMS error of the most accurate models
and had the average native overlap of 82%.
4. Discussion

Our broad objective is to maximize the coverage,
accuracy, resolution, and efficiency of structure charac-
terization of protein assemblies (Russell et al., 2004; Sali
et al., 2003). This aim will likely be achieved by hybrid
methods that consider various types of information,
including density maps from cryoEM, atomic structures
from crystallography and NMR spectroscopy, and
atomic models from protein structure prediction. A ma-
jor class of such hybrid methods involves the fitting of
subunit atomic structures into the cryoEM density
map of a large assembly.

In this paper, we combined comparative modeling
with the cryoEM fitting. Specifically, we addressed the
problem of whether or not simulated cryoEM maps con-
tain enough information to identify the most accurate
comparative models among a number of plausible mod-
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els based on different alignments between the target se-
quence and the template structure. We were motivated
by the increasing applicability of both cryoEM and
comparative modeling. For example, 18 sub-nanometer
resolution cryoEM structures of icosahedral particles
have been determined recently (Zhou and Chiu, 2003);
while the high-resolution structures of their subunits
are not known, most of them can be modeled by com-
parative modeling. Additionally, �700,000 of the �1.6
million known protein sequences have at least one do-
main that can be modeled based on its similarity to
one or more of the �26,000 known protein structures
(Pieper et al., 2004). As a consequence, fitting a subunit
into a density map is much more likely to involve a com-
parative model of the subunit than its experimentally
determined structure.

Our approach was based on the correlation between
model accuracy and the quality of the fit into a density
map. Specifically, the method finds an optimal atomic
model of a given subunit or domain by fitting alternative
comparative models into a given cryoEM map. Alterna-
tive models can be calculated by different programs and/
or parameter setups, based on different sequence align-
ments to different template structures. In the present
study, the major difference between these alternative
models is in the location of deletions as well as in the
location and conformation of insertions, given that a
comparative model is always almost identical to the tem-
plate structure in the aligned regions. In principle, such
model differences should be detectable at the intermedi-
ate cryoEM resolution range (Chiu et al., 2002).

The fitting of a model into a density map was
performed either by improved FOLDHUNTER (Jiang
et al., 2001) or by a new density fitting module of MOD-
ELLER (Mod-EM). Even though the gravity centers of
the model and the cryoEM map are approximately over-
lapping by construction of the benchmark, we used the
‘‘scanning Monte Carlo’’ protocol of Mod-EM to refine
both the translational and rotational degrees of freedom
(1–2 min per fit). However, a realistic application would
involve fitting into cryoEM density maps that are larger
than the probe. In such cases, the ‘‘scanning Monte
Carlo’’ protocol is not faster than the frequently used
correlation-based fitting program FOLDHUNTER
(10–15 min per fit), which was also tested here to pro-
vide a reference for fitting.

The benchmark clearly demonstrates that the most
accurate models can usually be identified by both pro-
grams, based on the quality of their fit into the density
map, even for noisy maps at 15 Å resolution (Figs. 1–3
and Table 1). Furthermore, these accurate models are
fitted with a much higher fitting score than that of the
template structure. In other words, an accurate compar-
ative model of a protein based on an experimentally
determined atomic structure of a remotely related
homolog generally fits better into its density map than
the homolog itself. The correlation between the native
overlap and the fitting score was dependent on the reso-
lution of the map, resulting in the increased accuracy of
the best-fitting models with increasing resolution. For
example, at 15 Å resolution, the average native overlap
of the model with the highest Mod-EM fitting score
was better than 69%, while at sub-nanometer resolution
(5–10 Å) this average was above 78%. Both Mod-EM
and FOLDHUNTER performed similarly, and we ex-
pect that most other fitting programs (Ceulemans and
Russell, 2004; Chacon and Wriggers, 2002; Roseman,
2000; Rossmann, 2000; Volkmann and Hanein, 1999;
Wriggers et al., 1999; Wu et al., 2003) would also per-
form comparably. In practice, more than one fitting pro-
gram may be used on the same problem to increase the
confidence in the identified solution.

From the perspective of comparative modeling, the
fitting score may be viewed as a model assessment
score. There are many model assessment procedures,
based on a variety of different considerations (John
and Sali, 2003; Melo et al., 2002; Wallner and Elofsson,
2003). Composite scoring that relies on several different
criteria is usually most reliable. Therefore, we explored
the potential synergy between the fitting score and an-
other model assessment criterion. For this test, we se-
lected the statistical potential Z-score calculated by
ProsaII (Sippl, 1993), which reflects statistical prefer-
ences for the residue solvent accessibilities and pairwise
residue distances that were extracted from many known
protein structures. Examples of model assessment by
both density fitting and statistical potentials reflect the
advantage of each method over the other (Fig. 4). De-
spite the limited size of our benchmark, it is clear that a
fitting score is likely to perform better when the alterna-
tive models have different shapes (e.g., different loop
conformations and lengths) (Fig. 4). Model assessment
based on a statistical potential, on the other hand, is
expected to perform well when the best model is very
accurate and its assessment does not depend on the lack
of neighboring subunits. Therefore, the identification of
the most accurate model by the fitting score is likely to
be improved by consideration of additional model
assessment scores.

While our benchmark does indicate the utility of
combining comparative modeling with cryoEM fitting
into noisy maps at up to 15 Å resolution, the test is
not entirely realistic. First, the cryoEM density maps
were simulated, not derived from experimental images.
Despite our attempt to model the map noise (Fig. 3
and Table 1), the noise in real maps may decrease the
observed correlation between the model accuracy and
the fitting score. Second, the cryoEM density maps were
calculated for the isolated fitted subunits. In practice,
the density maps would have to be obtained by segment-
ing the assembly density, given that cryoEM is currently
applied reliably to particles larger than �150 kDa. This
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step could further decrease the correlation between the
model accuracy and the fitting score.

Another limitation of our current benchmark is its fo-
cus on the errors in the sequence alignment, not in fold
assignment and orientations of domains and secondary
structure segments. However, such an extended bench-
mark could easily be created by using different template
structures to model the same target sequence and will be
explored in the future. Based on the current experience,
it is likely that selecting a model with the most accurate
fold and secondary structure packing can also be
achieved by combined modeling and cryoEM fitting.
Moreover, this combined approach could also benefit
from additional information, such as the location of
long a-helices and large b-sheets, extracted from feature
analysis of intermediate resolution cryoEM maps (Chiu
et al., 2002; Jiang et al., 2001; Kong and Ma, 2003;
Kong et al., 2004).

In summary, we showed that cryoEM density fitting
at better than 15 Å resolution can be used as a tool for
improving comparative protein structure modeling.
Moreover, comparative modeling provides models for
fitting into cryoEM maps that are more useful than
the experimentally determined structures of the homo-
logs. These results allow for an extension of the hybrid
methods by fitting comparative models instead of
experimental structures of the homologs into cryoEM
density maps. Future directions will involve modifying
the alignment, relative orientation of secondary struc-
ture segments, and loop conformations during the
search for the best fit into a given cryoEM map, by
methods such as moulding (John and Sali, 2003), nor-
mal mode analysis (Brooks and Karplus, 1983; Go et
al., 1983; Levitt et al., 1985; Ming et al., 2002; Tama
et al., 2002), and molecular dynamics (Fiser et al.,
2000). We will also apply our tools to ‘‘real’’ cryoEM
data.
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