Protein structure modeling with

MODELLER

Contributed by Benjamin Webb and Andrej Sali, Department of Bioengineering and
Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California
Institute for Quantitative Biosciences (QB3), University of California San Francisco,

San Francisco, CA 94158, USA.

Running Head: Protein structure modeling

Abstract

Genome sequencing projects have resulted in a rapid increase in the number of
known protein sequences. In contrast, only about one-hundredth of these sequences
have been characterized at atomic resolution using experimental structure
determination methods. Computational protein structure modeling techniques have
the potential to bridge this sequence-structure gap. In the following chapter, we
present an example that illustrates the use of MODELLER to construct a comparative

model for a protein with unknown structure. Automation of a similar protocol has



resulted in models of useful accuracy for domains in more than half of all known

protein sequences.
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1. Introduction

The function of a protein is determined by its sequence and its three-dimensional
(3D) structure. Large-scale genome sequencing projects are providing researchers
with millions of protein sequences, from various organisms, at an unprecedented
pace. However, the rate of experimental structural characterization of these
sequences is limited by the cost, time, and experimental challenges inherent in the
structural determination by X-ray crystallography and nuclear magnetic resonance

(NMR) spectroscopy.

In the absence of experimentally determined structures, computationally derived
protein structure models are often valuable for generating testable hypotheses(1,2).
Such models are generally produced using either comparative modeling methods, or
free modeling techniques (also referred to as ab initio or de novo modeling)(3).
Comparative modeling relies on structural information from related proteins to
guide the modeling procedure(4-6). Free modeling does not require a related
protein, but instead uses a variety of methods to combine physics with the known

behaviors of protein structures (for example by combining multiple short structural



fragments extracted from known proteins)(7-9); it is, however, extremely
computationally expensive(3). Comparative protein structure modeling, which this
text focuses on, has been used to produce reliable structure models for at least one
domain in more than half of all known sequences(10). Hence, computational
approaches can provide structural information for two orders of magnitude more
sequences than experimental methods, and are expected to be increasingly relied
upon as the gap between the number of known sequences and the number of

experimentally determined structures continues to widen.

Comparative modeling consists of four main steps(4) (Fig. 1): (i) fold assignment
that identifies overall similarity between the target sequence and at least one
known structure (template); (ii) alignment of the target sequence and the
template(s); (iii) building a model based on the alignment with the chosen

template(s); and (iv) predicting the accuracy of the model.

MODELLER is a computer program for comparative protein structure
modeling(11,12). In the simplest case, the input is an alignment of a sequence to be
modeled with the template structure(s), the atomic coordinates of the template(s),
and a simple script file. MODELLER then automatically calculates a model containing
all non-hydrogen atoms, without any user intervention and within minutes on a
desktop computer. Apart from model building, MODELLER can perform auxiliary
tasks such as fold assignment, alignment of two protein sequences or their

profiles(13), multiple alignment of protein sequences and/or structures(14,15),



clustering of sequences and/or structures, and ab initio modeling of loops in protein

structures(11).

MODELLER implements comparative protein structure modeling by satisfaction of
spatial restraints that include (i) homology-derived restraints on the distances and
dihedral angles in the target sequence, extracted from its alignment with the
template structures(12), (ii) stereochemical restraints such as bond length and
bond angle preferences, obtained from the CHARMM-22 molecular mechanics force-
field(16), (iii) statistical preferences for dihedral angles and non-bonded inter-
atomic distances, obtained from a representative set of known protein
structures(17,18), and (iv) optional manually curated restraints, such as those from
NMR spectroscopy, rules of secondary structure packing, cross-linking experiments,
fluorescence spectroscopy, image reconstruction from electron microscopy, site-
directed mutagenesis, and intuition (Fig. 1). The spatial restraints, expressed as
probability density functions, are combined into an objective function that is
optimized by a combination of conjugate gradients and molecular dynamics with
simulated annealing. This model building procedure is similar to structure

determination by NMR spectroscopy.

In this chapter, we use a sequence with unknown structure to illustrate the use of

various modules in MODELLER to perform the four steps of comparative modeling.



2. Materials

To follow the examples in this discussion, both the MODELLER software and a set of
suitable input files are needed. The MODELLER software is free for academic use; it

can be downloaded from http://salilab.org/modeller/ and is available in binary

form for most common machine types and operating systems (see Note 1). This text
uses MODELLER 9.11, the most recent version at the time of writing, but the
examples should also work with any newer version. The example input files can be

downloaded from http://salilab.org/modeller/tutorial/MMB13.zip.

All MODELLER scripts are Python scripts. Python is pre-installed on most Linux and

Mac machines; Windows users can obtain it from http://www.python.org/. It is not

necessary to install Python, or to have a detailed knowledge of its use, to use
MODELLER, but it is helpful for creating and understanding the more advanced

MODELLER scripts.

2.1. Typographical conventions

Monospaced text is used below for computer file and folder/directory names,

command lines, file contents, and variable and class names.

3. Methods

The procedure for calculating a 3D model for a sequence with unknown structure
will be illustrated using the following example: a novel gene for lactate

dehydrogenase (LDH) was identified from the genomic sequence of Trichomonas



vaginalis (TvLDH). The corresponding protein had higher sequence similarity to the
malate dehydrogenase of the same species (TvMDH) than to any other LDH(19).
Comparative models were constructed for TvLDH and TvMDH to study the
sequences in a structural context and to suggest site-directed mutagenesis
experiments to elucidate changes in enzymatic specificity in this apparent case of
convergent evolution. The native and mutated enzymes were subsequently

expressed and their activities compared(19).

3.1. Fold assignment

The first step in comparative modeling is to identify one or more templates
(sequences with known 3D structure) for the modeling procedure. One way to do
this is to search a database of experimentally determined structures extracted from
the Protein Data Bank (PDB)(20) to find sequences that have detectable similarity
to the target (see Note 2). To prepare this database (see Note 3), run the following

command from the command line (see Note 4):

python make pdb 95.py > make pdb 95.log

This generates a file called pdb 95 .bin, which is a binary representation of the
search database (see Note 5) and a log file, nake pdb 95.1log. Next, MODELLER’s
profile.build () command is used; this uses the local dynamic programming
algorithm to identify sequences related to TvLDH(21). In the simplest case,

profile.build () takes as input the target sequence, in file TvLDH.al1i (see



Note 6), and the binary database and returns a set of statistically significant

alignments (file build profile.prf)and a MODELLER log file

(build profile.log).Run this step by typing

python build profile.py > build profile.log

The first few lines of the resulting build profile.prf willlook similar to (see

Note 7) the following (note that the rightmost column, containing the primary

sequence, has been omitted here for clarity):

# Number of sequences:

# Length of profile

# N_PROF_ITERATIONS

# GAP PENALTIES 1D

# MATRIX OFFSET
# RR_FILE
1 TZviIDH S O
2 la5zA X 1
3 2a92A X 1
4 4aj2A X 1

5 1b8pA X 1

335

312

316

327

327

51

335

-500.0 -50.0
-450.0
S{LIB}/blosum62.sim.mat
1 335 0 0 0 0. 0.0
75 242 63 229 164 28. 0.34E-07
8 191 6 186 174 26. 0.69E-04
85 301 89 300 207 25. 0.15E-04

7 331 6 325 316 42. 0.0



The first six lines of this file contain the input parameters used to create the
alignments. Subsequent lines contain several columns of data; for the purposes of
this example, the most important columns are (i) the second column, containing the
PDB code of the related template sequences; (ii) the eleventh column, containing the
percentage sequence identity between the TvLDH and template sequences; and (iii)
the twelfth column, containing the E-values for the statistical significance of the

alignments. These columns are shown in bold above.

The extent of similarity between the target-template pairs is usually quantified
using sequence identity or a statistical measure such as E-value (see Note 8).
Inspection of column 11 shows that the template with the highest sequence identity
with the target is the 1y7tA structure (45% sequence identity). Further inspection
of column 12 shows that there are nine PDB sequences, all corresponding to malate
dehydrogenases (1b8pA, 1civA, 3d5tA, 4h7pA, 4h7pB, 5mdhA, 7mdhA, 1smkKA,

1y7tA) that show significant similarities to TvLDH with E-values of zero.

3.2. Sequence-structure alignment

The next step is to align the target TVLDH sequence with the chosen template (see
Note 9). Here, the 1y7tA template is used. This alignment is created using
MODELLER’s align2d () function (see Note 10). Although align2d () is based
on a global dynamic programming algorithm(22), it is different from standard
sequence-sequence alignment methods because it takes into account structural
information from the template when constructing an alignment. This task is

achieved through a variable gap penalty function that tends to place gaps in solvent



exposed and curved regions, outside secondary structure segments, and not
between two positions that are close in space(14). In the current example, the
target-template similarity is so high that almost any method with reasonable

parameters will result in the correct alignment (see Note 11).

This step is carried out by running:

python align2d.py > align2d.log

This script reads in the PDB structure of the template, and the sequence of the target
(TvLDH) and calls the align2d () function to perform the alignment. The resulting
alignment is written out in two formats. TvLDH-1y7tA.ali in the PIR format is
subsequently used by MODELLER for modeling; TvL.DH-1y7tA.pap in the PAP
format is easier to read, for example to see which residues are aligned with each

other.

3.3. Model building

Models of TVLDH can now be built by running:

python model.py > model.log

The script uses MODELLER’s automodel class, specifying the name of the

alignment file to use and the identifiers of the target (TvLDH) and template (1y7tA)



sequences. It then asks automodel to generate five models (see Note 12). Each is
assessed with the normalized DOPE assessment method(18). The five models are

written out as PDB files with names TvLDH.B9999[0001-0005] . pdb.

3.4. Model evaluation

The log file produced by the model building procedure (model . 1og) contains a
summary of each calculation at the bottom of the file. This summary includes, for
each of the 5 models, the MODELLER objective function (see Note 13) (12) and the
normalized DOPE score (see Note 14). These scores can be used to identify which of

the 5 models produced is likely to be the most accurate model (see Note 15).

Since the DOPE potential is simply a sum of interactions between pairs of atoms, it
can be decomposed into a score per residue, which is termed in MODELLER an
‘energy profile’. This energy profile can be generated for the model with the best
DOPE score by running the make energy profile.py script. The script outputs
the profile, TVLDH.profile, in a simple format that is easily displayed in any
graphing package. Such a profile is useful to detect local regions of high pseudo-

energy that usually correspond to errors in the model (see Notes 16 and 17).

3.5 Use of multiple templates

One way to potentially improve the accuracy of generated models is to use multiple
template structures. When there are multiple templates, different template
structures may be of higher local sequence identity to the target (or higher quality)

than others in different regions, allowing MODELLER to build a model based on the



most useful structural information for each region in the protein. The procedure is
demonstrated here using the five templates that have the highest sequence identity
to the target (1b8pA, 4h7pA, 4h7pB, 5mdhA, 1y7tA). Input files can be found in the
‘multiple’ subdirectory of the zipfile. The first step is to align all of the templates

with each other, which can be done by running:

python salign.py > salign.log

This script uses MODELLER’s salign () function(15) to read in all of the template
structures and then generate their best structural alignment (see Note 18), written

outas templates.ali.

Next, just as for single template modeling, the target is aligned with the templates
using the align2d () function. The function’s align block parameter is setto 5
to align the target sequence with the pre-aligned block of templates, and not to

change the existing alignment between individual templates:

python align2d.py > align2d.log

Finally, model generation proceeds just as for the single template case (the only

difference is that automodel is now given a list of all five templates):

python model.py > model.log



Comparison of the normalized DOPE scores from the end of this logfile with those
from the single template case shows an improvement in the DOPE score of the best
model from -0.92 to -1.19. Fig. 2 shows the energy profiles of the best scoring
models from each procedure (generated using the plot profiles.py script). It
can be seen that some of the predicted errors in the single-template model (peaks in

the graph) have been resolved in the model calculated using multiple templates.

3.6. External assessment

Models generated by MODELLER are stored in PDB files, and so can be evaluated for
accuracy with other methods if desired. One such method is the ModEval web server

at http://salilab.org/evaluation/. This server takes as input the PDB file and the

MODELLER PIR alignment used to generate it. It returns not only the normalized
DOPE score and the energy profile, but also the GA341 assessment score(23,24) and
an estimate of the Ca RMSD and native overlap between the model and its
hypothetical native structure, using the TSVMod method(25); native overlap is
defined as the fraction of Ca atoms in the model that are within 3.5 A of the same Ca

atom in the native structure after least squares superposition.

3.7. Structures of complexes

The example shown here generates a model of a single protein. However,
MODELLER can also generate models of complexes of multiple proteins if templates
for the entire complex are available; examples can be found in the MODELLER

manual. In the case where only templates for the individual subunits in the complex



are available, comparative models can be docked in a pairwise fashion by molecular
docking(26,27) or assembled based on various experimental data to generate
approximate models of the complex using a wide variety of integrative modeling
methods(28-31). For example, if a cryo-electron microscopy density map of the
complex is available, a model of the whole complex can be constructed by
simultaneously fitting comparative models of the subunits into the density map
using the MultiFit method(32) or its associated web server at

http://salilab.org/multifit/(33). Alternatively, if a small angle X-ray (SAXS) profile

of a dimer is available, models of the dimer can be generated by docking the two
subunits, constrained by the SAXS data, using the FoXSDock web server at

http://salilab.org/foxsdock/(34). Both of these methods are part of the open source

Integrative Modeling Platform (IMP) package(29).

4. Notes

1. The MODELLER website also contains a full manual, a mailing list, and more
example MODELLER scripts. A license key is required to use MODELLER, but this

can also be obtained from the website.

2. The sequence identity is a useful predictor of the accuracy of the final model when
its value is >30%. It has been shown that models based on such alignments usually
have, on average, more than ~60% of the backbone atoms correctly modeled with a
root-mean-squared-deviation (RMSD) for Ca atoms of less than 3.5 A (Fig. 3).

Sequence-structure relationships in the “twilight zone”(35) (corresponding to



relationships with statistically significant sequence similarity with identities
generally in the 10-30% range), or the “midnight zone”(35) (corresponding to
statistically insignificant sequence similarity), typically result in less accurate

models.

3. The database contains sequences of the structures from PDB. To increase the
search speed, redundancy is removed from the database; the PDB sequences are
clustered with other sequences that are at least 95% identical, and only the
representative of each cluster is stored in the database. This database is termed
‘pdb_95’. A copy of this database is included in the downloaded zipfile as

pdb 95.pir. Newer versions of this database, updated as new structures are
deposited in PDB, can be downloaded from the MODELLER website at

http://salilab.org/modeller/supplemental.html.

4. MODELLER is a command line tool, and so all commands must be run by typing at
the command line. All of the necessary input files for this demonstration are in the
downloaded zipfile; simply download and extract the zipfile and change into the
newly-created directory (using the ‘cd’ command at the command line). After this,
MODELLER scripts can be run as shown in the text. All MODELLER scripts are
Python scripts and so should be run with the ‘oython’ command. (On some systems
the full path to the Python interpreter is necessary, such as /usr/bin/python on
a Linux or Mac machine or C: \python26\python.exe on a Windows system.)

MODELLER scripts can also be run from other Python frontends, such as IDLE, if



desired. On a Windows system, it is generally not a good idea to simply ‘double
click’ on a MODELLER Python script, since any output from the script will disappear
as soon as it finishes. Finally, if Python is not installed, MODELLER includes a basic
Python 2.3 interpreter as ‘mod<version>’. For example, to run this first script
using MODELLER version 9.11’s own interpreter, run ‘mod9.11

make pdb 95.py’. Note thatmod9.11 automatically creates a

‘make pdb 95.1og’ logfile.

5. The binary database is much faster to use than the original text format database,
pdb 95.pir. Note, however, that it is not necessarily smaller. This script does not

need to be run again unless pdb 95.pir is updated.

6. TvLDH. ali simply contains the primary sequence of the target, in MODELLER’s
variant of the PIR format (which is documented in more detail in the MODELLER

manual). This file is included in the zipfile.

7. Although MODELLER'’s algorithms are deterministic, exactly the same job run on
different machines (e.g. a Linux box versus a Windows or Mac machine) may give
different results. This difference may arise because different machines handle
rounding of floating point numbers and ordering of floating point operations
differently, and the minor differences introduced can be compounded and end up

giving very different outputs. This variation is normal and to be expected, and so the



results shown in this text may differ from those obtained by running MODELLER

elsewhere.

8. The sequence identity is not a statistically reliable measure of alignment
significance and corresponding model accuracy for values lower than 30%(35,36).
During a scan of a large database, for instance, it is possible that low values occur
purely by chance. In such cases, it is useful to quantify the sequence-structure
relationship using more robust measures of statistical significance, such as E-
values(37), that compare the score obtained for an alignment with an established

background distribution of such scores.

One other problem of using sequence identity as a measure to select templates is
that, in practice, there is no single generally used way to normalize it(36). For
instance, local alignment methods usually normalize the number of identically
aligned residues by the length of the alignment, while global alignment methods
normalize it by either the length of the target sequence or the length of the shorter
of the two sequences. Therefore, it is possible that alignments of short fragments
produce a high sequence identity but do not result in an accurate model. Measures
of statistical significance do not suffer from this normalization problem because the
alignment scores are corrected for the length of the aligned segment before the

significance is computed(37,38).



9. After a list of all related protein structures and their alignments with the target
sequence has been obtained, template structures are usually prioritized depending
on the purpose of the comparative model. Template structures may be chosen
based purely on the target-template sequence identity or a combination of several
other criteria, such as the experimental accuracy of the structures (resolution of X-
ray structures, number of restraints per residue for NMR structures), conservation
of active-site residues, holo-structures that have bound ligands of interest, and prior

biological information that pertains to the solvent, pH, and quaternary contacts.

10. Although fold assignment and sequence-structure alignment are logically two
distinct steps in the process of comparative modeling, in practice almost all fold
assignment methods also provide sequence-structure alignments. In the past, fold
assignment methods were optimized for better sensitivity in detecting remotely
related homologs, often at the cost of alignment accuracy. However, recent methods
simultaneously optimize both the sensitivity and alignment accuracy. For the sake of

clarity, however, they are still considered as separate steps in the current chapter.

11. Most alignment methods use either the local or global dynamic programming
algorithms to derive the optimal alignment between two or more sequences and/or
structures. The methods, however, vary in terms of the scoring function that is being
optimized. The differences are usually in the form of the gap-penalty function
(linear, affine, or variable)(14), the substitution matrix used to score the aligned

residues (20x20 matrices derived from alignments with a given sequence identity,



those derived from structural alignments, and those incorporating the structural
environment of the residues)(39), or combinations of both(40-43). There doesn’t
yet exist a single universal scoring function that guarantees the most accurate
alignment for all situations. Above 30-40% sequence identity, alignments produced
by almost all methods are similar. However, in the twilight and midnight zones of
sequence identity, models based on the alignments of different methods tend to
have significant variations in accuracy. Improving the performance and accuracy of
methods in this regime remains one of the main tasks of comparative

modeling(44,45).

12. To generate each model, MODELLER takes a starting structure, which is simply
the target sequence threaded onto the template backbone, adds some
randomization to the coordinates, and then optimizes it by searching for the
minimum of its scoring function. Since finding the global minimum of the scoring
function is not guaranteed, it is usually recommended to repeat the procedure
multiple times to generate an ensemble of models; the randomization is necessary
otherwise the same model would be generated each time. Computing multiple
models is particularly important when the sequence-structure alignment contains
different templates with many insertions and/or deletions. Calculating multiple
models allows for better sampling of the different template segments and the
conformations of the unaligned regions. The best scoring model among these

multiple models is generally more accurate than the first model produced.



13. The MODELLER objective function is a measure of how well the model satisfies
the input spatial restraints. Lower values of the objective function indicate a better

fit with the input data and, thus, models that are likely to be more accurate(12).

14. The Discrete Optimized Protein Energy (DOPE)(18) is an atomic distance-
dependent statistical potential based on a physical reference state that accounts for
the finite size and spherical shape of proteins. The reference state assumes that a
protein chain consists of non-interacting atoms in a homogeneous sphere of
equivalent radius to that of the corresponding protein. The DOPE potential was
derived by comparing the distance statistics from a non-redundant PDB subset of
1,472 high-resolution protein structures with the distance distribution function of
the reference state. By default, the DOPE score is not included in the model building
routine, and thus can be used as an independent assessment of the accuracy of the
output models. The DOPE score assigns a score for a model by considering the
positions of all non-hydrogen atoms, with lower scores predicting more accurate
models. Since DOPE is a pseudo-energy dependent on the composition and size of
the system, DOPE scores are only directly comparable for models with the same set
of atoms (so can, for example, be used to rank multiple models of the same protein,
but cannot be used without additional approximations to compare models of a
protein and its mutant). The normalized DOPE (or z-DOPE) score, however, is a z
score that relates the DOPE score of the model to the average observed DOPE score
for “reference” protein structures of similar size(25). Negative normalized DOPE

scores of -1 or below are likely to correspond to models with the correct fold.



15. Different measures to predict errors in a protein structure perform best at
different levels of resolution. For instance, physics-based force-fields may be helpful
at identifying the best model when all models are very close to the native state (<

1.5 A RMSD, corresponding to ~85% target-template sequence identity). In contrast,
coarse-grained scores such as atomic distance statistical potentials have been
shown to have the greatest ability to differentiate models in the ~3 A Ca RMSD
range. Tests show that such scores are often able to identify a model within 0.5 A Ca
RMSD of the most accurate model produced(46). When multiple models are built,
the DOPE score generally selects a more accurate model than the MODELLER

objective function.

16. Segments of the target sequence that have no equivalent region in the template
structure (i.e., insertions or loops) are among the most difficult regions to
model(11,47-49). This difficulty is compounded when the target and template are
distantly related, with errors in the alignment leading to incorrect positions of the
insertions and distortions in the loop environment. Using alignment methods that
incorporate structural information can often correct such errors(14). Once a
reliable alignment is obtained, various modeling protocols can predict the loop
conformation, for insertions of less than approximately 10 residues

long(11,47,50,51).



17. As a consequence of sequence divergence, the mainchain conformation of a
protein can change, even if the overall fold remains the same. Therefore, it is
possible that in some correctly aligned segments of a model, the template is locally
different (< 3 A) from the target, resulting in errors in that region. The structural
differences are sometimes not due to differences in sequence, but are a consequence
of artifacts in structure determination or structure determination in different
environments (e.g., packing of subunits in a crystal and ligands). The simultaneous

use of several templates can minimize this kind of error(52,53).

18. It is particularly important to generate the best alignment of the structures to
minimize conflicting information (e.g., one template suggesting that two Ca atoms in
the target are close, and another suggesting they are widely separated). SALIGN(15)
uses both sequence- and structure-dependent features to align multiple structures.
It employs an iterative procedure to determine the input parameters that maximize

the structural overlap of the generated alignment.
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Figure 1. Comparative protein structure modeling. (a) A flowchart illustrating the steps in the

construction of a comparative model(4). (b) Description of comparative modeling by extraction of

spatial restraints as implemented in MODELLER(12). By default, spatial restraints in MODELLER involve

(i) homology-derived restraints from the aligned template structures, (ii) statistical restraints derived

from all known protein structures, and (iii) stereochemical restraints from the CHARMM-22 molecular

mechanics force field. These restraints are combined into an objective function that is then optimized to

calculate the final 3D model of the target sequence.
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Figure 2. The DOPE(18) energy profiles for the best-assessed model generated by modeling with a single
template (solid line) and multiple templates (dotted line). Peaks (local regions of high, unfavorable

score) tend to correspond to errors in the models.
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Figure 3. Average model accuracy as a function of sequence identity(54). As the sequence identity
between the target sequence and the template structure decreases, the average structural similarity
between the template and the target also decreases (dark grey area, squares)(55). Structural overlap is
defined as the fraction of equivalent Ca atoms. For the comparison of the model with the actual structure
(circles), two Ca atoms were considered equivalent if they belonged to the same residue and were within
3.5 A of each other after least squares superposition. For comparisons between the template structure
and the actual target structure (squares), two Cax atoms were considered equivalent if they were within
3.5 A of each other after alignment and rigid-body superposition. The difference between the model and
the actual target structure is a combination of the target-template differences (dark grey area) and the
alignment errors (light grey area). The figure was constructed by calculating ~1 million comparative
models based on single template of varying similarity to the targets. All targets had known

(experimentally determined) structures.



