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Abstract 

PDB-IHM is a branch of the Protein Data Bank (PDB), a Worldwide Protein Data Bank (wwPDB) Core 
Archive, that expands its scope by allowing for additional biomolecular structure representations and 
types of experimental information (i.e., integrative/hybrid structure models). As of October 2025, PDB-
IHM contained 374 entries, benefitting from multi-scale and multi-state representations and 17 types of 
experimental data. These structure models are assigned PDB accession codes and are archived along-
side other experimental structures in the PDB. Rigorous interpretation of a structure model requires
assessment of underlying data quality, consistency with the input data, and estimates of positional uncer-
tainty of its components. Herein, we present the IHMValidation pipeline (https://validate.pdb-ihm.org; 
https://github.com/salilab/IHMValidation) based on recommendations from the wwPDB Integrative Meth-
ods Task Force plus the small-angle scattering (SAS), chemical crosslinking mass spectrometry 
(crosslinking-MS), and cryo-electron microscopy and tomography (3DEM) communities. The IHMValida-
tion report (available in both PDF and HTML formats) comprises six sections: (i) overview; (ii) model 
details; (iii) data quality assessments; (iv) local geometry assessments (i.e., model quality); (v) fit of the 
model to the data used to generate it; and (vi) fit of the model to the data used for validation. Future expan-
sions of the IHMValidation pipeline will: (i) reflect recommendations coming from additional experimental
communities, including Förster resonance energy transfer (FRET) and hydrogen/deuterium exchange MS
(HDX-MS); (ii) include other validation criteria, such as Bayesian likelihoods for the data; and (iii) repre-
sent estimates of structure model uncertainty based on the variation among alternative models satisfying
input data.
C 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/). 
 

Introduction 
Protein Data Bank (PDB) [1–3] is the single global 

archive of three-dimensional (3D) structure models 
of biological macromolecules and their complexes 
determined by X-ray crystallography (MX) (82% of 
holdings as of October 2025), three-dimensional 
cryo-electron microscopy (3DEM, 12%), nuclear 
magnetic resonance (NMR) spectroscopy (6%), 
and other techniques (<1%), to talling more than
243,000 entries. The PDB is one of three jointly
managed Worldwide Protein Data Bank (wwPDB)
[4] Core Archives, the other two being the Electron 
Microscopy Data Bank (EMDB) [5] and the Biologi-
cal Magnetic Resonance Data Bank (BMRB) [6]. 
Recently, the scope of the PDB was expanded by 
PDB-IHM (PDB Integrative and Hybrid Methods;
previously PDB-Dev [7,8]) [9]. PDB-IHM is a branch 
of the PDB that allows for additional biomolecular 
structure representations and types of experimental 
information, supporting deposition, validation, ar chi-
val, and dissemination of integrative/hybrid struc-
2

ture models (hereafter abbreviated as “integrative 
str ucture models”).
Integrative modeling aims to maximize accuracy, 

precision, completeness, and explanatory power of 
a 3D structural model by combining multiple types 
of input information: experimental data (e.g.,  NMR
data, chemical crosslinks), physical theories (e.g., 
stereochemistry quantified by a molecular 
mechanics force field), statistical preferences (e.g., 
atomic statistical potentials extracted from known 
structures), and previous structural models (e.g., 
structural models of complex subunits). For 
example, an integrative structure model is often 
computed using a 3DEM map, crosslinks 
determined by chemical crosslinking mass 
spectrometry (crosslinking-MS), and 
stereochemistry restraints. Depending on the
resolution of the data and the scale of the modeled
system, a modeler may choose to compute a
model of any one of several types, including
coarse-grained, multi-scaled, multi-state, and
ordered-state [10]. To annotate new experimental
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data types and model representations, the wwPDB 
PDB-IHM team developed the IHM extension of 
the PDBx/mmCIF dictionary, called IHMCIF [11]. 
As of October 2025, PDB-IHM contained 374 

publicly released entries (Figure 1A). Most 
( 74%) of these entries are multi-chain (homo-
and hetero-oligomeric) structures; 56% of the 
entries have a molecular weight greater than 
80 kDa, with an overall range from 5.8 kDa to 3.8
MDa (Figure 1B). This distribution is similar to that 
for the main PDB archive.
PDB-IHM entries vary in the types of 

experimental data on which they are based. 
Unlike the main PDB archive, which pri marily
consists of structures determined based on the
Figure 1. PDB-IHM contents. (A) Growth in the number 
circles). For comparison, the initial growth in the number of 
(filled green circles). We excluded the period from 1991 to 1
that timeframe. (B) Molecular weight of the PDB-IHM structur
PDB-IHM entries coming from 3DEM, SAS, and crosslinking
entries. (D) Experimental methods and structural data source
a matrix. Each row corresponds to a source of input
(crosslinking-MS), various forms of electron microscopy (E
small-angle scattering (SAS), single-molecule and ensemble
FRET), hydrogen–deuterium exchange MS (HDX-MS), elect
footprinting (HRF). The number of entries with a given type
represents a particular combination of input information. Co
input information in the column; at the bottom, the number
information.

3

MX, 3DEM, and NMR data, the current PDB-IHM 
entries rely on 17 different types of experiments, 
including various forms of electron microscopy 
(EM), crosslinking-MS, small-angle scattering 
(SAS), NMR spectroscopy, mutagenesis, single-
molecule Förster resonance energy transfer 
(smFRET), hydrogen–deuterium exchange MS 
(HDX-MS), X-ray diffraction, electron 
paramagnetic resonance (EPR), DNA footprinting, 
and hydroxyl radical footprintin g (HRF). Overall,
83 unique combinations of these input data types
were used to compute the current PDB-IHM
structure models (Figure 1D). 
Integrative modeling generally benefits from 

previously determined starting structures for
of integrative structure models in PDB-IHM (black filled 
3DEM structures between 1996 and 2005 is also shown 
995, because only one 3DEM structure was deposited in 
e versus number of polymer chains. (C) Venn diagram of 
-MS data; collectively, they represent 85% of all released 
s used to generate PDB-IHM structures are presented in 
information, including crosslinking mass spectrometry
M), nuclear magnetic resonance (NMR) spectroscopy,
Förster resonance energy transfer (smFRET, Ensemble
ron paramagnetic resonance (EPR), and hydroxyl radical
of input information is plotted on the right. Each column
unts in the top section indicate the number of sources of
of entries with a given combination of sources of input

move_f0005
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individual components of the modele d system
[10,12,13]. Half of the PDB-IHM structure models 
were generated using at least one starting structure; 
conformations of these structures can be fixed or 
flexible during integrative modeling. Starting struc-
tures can be determined by any structural biology 
method, including experimental methods (e.g.,  X-
ray crystallography, NMR spectroscopy, 3DEM)
and computational methods (e.g., comparative
modeling, de novo structure prediction [14]). Con-
veniently, the atomic coordinates of these starting 
structures can often be downloaded from the PDB
[2], PDB-IHM [9], Model Archive [15], or other public 
domain repositories. A substantial portion of PDB-
IHM entries (43%) contain at least one polymer 
component extracted from an experimental struc-
ture archived in PDB ( 41%) or a PDB-IHM integra-
tive structure model ( 6%). Similarly, 29% of the 
PDB-IHM entries also contain at least one compo-
nent polymer structure computed by comparative
modeling ( 16%), using software tools such as
MODELER [16], SwissMode l [17], and Ros etta
[18],  or  de novo structure prediction ( 18%), using 
programs such as RoseTTAFold [19] and Alpha-
Fold2 /3 [20,21]. We anticipate a rapid increase in 
the use of de novo models due to their availability, 
coverage, and accuracy. This trend has already 
been obser ved with recent PDB-IHM depositions
(74% of entries released in 2025).
Rigorous interpretation of a structure requires 

assessment of underlying data quality, 
consistency with the input data, and estimates of 
positional uncertainty of the generated Cartesian 
coordinates. Herein, we present the IHMValidation 
pipeline based on rec ommendations from the
wwPDB Integrative/Hybrid Methods Task Force
(IHMtf) [22,23] plus the SAS [24,25], crosslinking-
MS [26,27], and 3DEM [28] communities. We prior-
itized implementing support for SAS, crosslinking-
MS, and 3DEM data because they accounted for 
85% of the PDB-IHM entries (Figure 1C). 

Results and Disc ussion
Validation report 
Inspired by previous efforts on structura l

validation [24,28–30], we organized information 
about each structure model, including experimental 
and structural data used for structure model gener-
ation, model representation, details of the modeling 
protocol, and validation metrics, into two key docu-
ments: the full validation report and a summary
table (Supplementary Files 1 an d 2). The full valida-
tion report includes extended statistics and detailed 
plots. The summary table is a concise description of 
the full validation report, without graphical displays. 
The IHMValidation pi peline generates human-
readable reports in both PDF and HTML formats.
The validation report is organized into six 

sections: (i) overview; (ii) mo del details; (iii) data
4

quality assessments; (iv) local geometry 
assessments (i.e., model quality); (v) fit of the 
model to the data used to generate it; and (vi) fit 
of the model to the data used for validation. Each 
section contains validation metrics presented as 
tables with numerical values and plots. Selection 
of metrics depends on the type of structural 
(atomic, coarse-grained, mu lti-scale) and the type
of experimental data used to generate the
integrative structure model, following
recommendations from the IHMtf [22,23] and 
data-generating communities [24–28]. Next, we 
describe eac h section.

Overview 
This section provides an “executive” summary of 

the structure content and key quality indicators. 
The summary indicates serio us problems with the
structure, if any (Figure 2). The section contains 
plots of key metrics, divided into four categories, 
one for each validation criterion: (i) data quality
assessments (Figure 2A, B); (ii) local geometry 
assessments (i.e., model quality); (iii) fit of the 
model to the data used to generate it (Figure 2B, 
C) and (iv) fit of the model to the data used for
validation.

Model details 
This section contains tables with detailed 

information about (i) the entities present in the 
structure (e.g., biopolymers and ligands) and their 
representation (i.e., atomic, coarse-grained, multi-
scale, and multi-state); (ii) a description and links 
to dataset s for computing the structure; and (iii) a
summary of the modeling methodology
(Supplementary File 1). 
Quality of data and fit of integrative structure
models to data

Annotations can help depositors, biocurators, and 
data consumers identify problems with the 
underlying data, including artifacts resulting from 
experiments and data conversions into
standardized formats.
With the data quality assessment in hand, we 

proceed to assess the integrative model against 
the data. IHMValidation distinguishes between two 
types of assessments. For both types, we use the 
same criteria to quantify the model-data match. 
First, the model is assessed against the data used 
to generate it. Ideally, the model should satisfy all 
of the input data within the specified data 
precision. Second, a model can be assessed with 
respect to holdout data ( i.e., data not used to
compute the model), whether reported in the
current study or previously published. Large
deviation(s) of a model from holdout data can
reveal structure overfitting [31,32], particularly when

move_f0010
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Figure 2. Typical issues highlighted by the IHMValidation reports. (A) The number of crosslinks used for 
modeling versus those present in the original dataset. (N.B.: Crosslinking-MS experiments can identify thousands of 
proteins, of which only a fraction are used for generating a particular PDB-IHM entry). For 9A8W, 268 of 284
crosslinks reported in the PRIDE dataset (PXD053341) were identified between proteins of interest, and only 251 of
them were used for integrative modeling due to truncations of flexible regions [67]. (B) Fit of structural model to 
crosslinking-MS and 3DEM data. Integrative structure models are often computed using low-to-medium resolution 
data (e.g., crosslinking-MS and mid-resolution cryo-EM maps). (N.B.: Lower resolution 3DEM maps ( 5 A) typically
exhibit average per residue Q-scores of 0.3 [68]). Integrative modeling of 9A0J [69] utilized three different 3DEM 
maps (EMDB IDs: EMD-10291, EMD-10292, EMD-10293) to generate a more complete model that covers as many 
residues as possible. Spatial restraints derived from crosslinking-MS data provided complementary information about 
the relative positions of subunits across the maps. (C) Fit of structure to SAS data. At first glance, the agreement
between the structure 8ZZ9 and the SAS data (SASBDB ID SASDC29) is unacceptably low (v2 25). However, the
authors rationalized the differences in the high-q region by the intrinsic dynamics of the protein, which was confirmed
using NMR spectroscopy [70]. (D) Regions of low-(red) and high-(blue) local precision in the two collections of multi-
state models of human guanylate-binding protein 1 (hGBP-1, 9A1G), annotated and visualized using PrISM. Two 
deposited collections of models (100 and 106 individual models in states M1 and M2, respectively) with substantially
different representative structures for each state and noticeable differences in regions of high and low precision are
shown [71].
it is generated from a sparse dataset. Currently, we 
report assessments based on data used to gener-
ate the integrative structure model, while holdout 
ass essment is planned for the next IHMValidation
release.
5

Quality of SAS data and fit of integrative
structure models to data

Small-angle scattering (SAS) of X-rays (SAXS) or 
neutrons (SANS) by macromolecules in solution 
enables the characterization of their size and
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shape. In addition, as the SAS measurement yields 
the time and ensemble average of the molecules 
present in the solution, it provides information on 
structural heterogeneity relatin g to conformational
or oligomeric state(s) present in the sample [33– 
36]. One advantage of SAS experiments is that 
the characterized system is in solution. While 
in situ measurements are sometimes feasible, most 
studies involve samples purified to high purity. SAS 
data can be useful for integrative modeling, espe-
cially for large and/or flexible macromolecules that 
may be difficult to study using other structural tech-
niques alone. For example, the atom-pair distance 
distribution fu nction (PDDF) computed from SAS
data can be used as a spatial restraint for integrative
structure modeling and/or to validate the resulting
models [37–39]. 
The SAS portion of an IHMValidation report 

adheres to the wwPDB SAS Validation Ta sk
Force (SASvtf) recommendations [24]. PDB-IHM 
depositors are required to submit their SAS data
to SASBDB [40], which serves as the source of 
SAS data and quality metrics in sasCIF format
[41] as recommended by the SASvtf [24]. 
For data quality assessment the scattering profile 

is presented with data quality metrics, including 
Guinier analysis for the evaluation of the radius of 
gyration, Rg, PDDF analysis for Rg and maximum 
particle dimension estimates (Dmax)  as  well  as
associated plots, e.g., Porod-Debye and Kratky 
plot s that provide additional qualitative information
relating to particle compactness, flatness, flexibility
or extensibility (Supplementary Table 1A). PDB-
IHM model metrics based on SAS data
(Supplementary Table 1B) include plots of SAS 
profiles calculated for structures and their 
goodness-of-fit to experimental data in the form of 
the reduced v2 with its associated error-weig hted
residual difference plot between model and
experiment (Figure 2C), and p-values from the 
Correlation Ma p (CorMap) test.

Quality of crosslinking-MS data and fit of 
integrative structure models to data

Crosslinking-MS can identify pairs of spatially 
proximal residues in a pro tein or protein complex
[42]. After the sample is exposed to a chemical 
crosslinker, it is proteolytically digested (usually with 
trypsin), followed by detecting crosslinked pairs of 
residues by MS. These pairs can be converted into 
spatia l restraints for integrative modeling and/or for
validation of the resulting models [43]. The develop-
ment of crosslinking reagents of varying length and 
chemical reactivity enables the study of composi-
tionally and structurally homogeneous and hetero-
geneous protein complexes in vitro and in situ
[44,45]. Moreover, the approach can also be 
applied to nucleic acids and th eir complexes with
proteins [46]. 
6

The crosslinking-MS community is in the process 
of establishing its data standards [26,27], including 
protocols for validating crosslinking-MS data and 
structures. We propose here a set of metrics and 
visualization approaches to facilitate further discus-
sion about community standards for validating th is
type of data, in coordination with members of the
crosslinking-MS [27] community and the PRIDE 
database for proteomics data, including 
crosslinking-MS [47]. 
In the IHMValidation report, we first note the 

numbers of reported and utilized crosslinks. 
Crosslinking-MS data are retrieved from the 
PRIDE database via the Crosslinking-API or 
directly from a data file in the open standard
mzIdentML format (version 1.2 or 1.3) [48]. We then 
compare proteins reported in the <DBSequence> 
element in mzIdentML with those reported in the 
IHMCIF file and match the corresponding cross-
links. Percentages of crosslinks present in the IHM-
CIF file with respect to the crosslinking-MS data in 
the mzIdentML file are reported. Low percentage 
values indicate a potential problem with the omis-
sion of data, although sometimes only a fraction of
crosslinks from an in situ or in vivo dataset is rele-
vant for the current molecular system.
There is currently no generally accepted 

approach for performing a goodness-of-fit 
assessment between a 3D structural model and 
crosslinking-MS data. Widely used metrics/ 
strategies include: (i) Euclidean or surface-based
distances [49]; (ii) mapping of crosslinks onto cross-
linked functional groups or Ca atoms [50]; (iii) cross-
link satisfaction by a single conformation or a 
collection of conformations [51]; and (iv) continuous 
probabilistic scores as oppose d to sharp cutoffs
[52]. 
IHMValidation compares the structural model 

against the crosslink restraints used for integrative 
modeling as submitted by depositors. We provide 
a summary table listing restraints and 
corresponding user-provided thresholds. Next, we 
assess restraint satisfaction against the thresholds 
using Euclidean distances. The IHMValidation 
report attempts to account for modeling 
complexity during the assessment. For example, a 
single crosslink can be represented as a 
combination of lower and upper-bound distance 
restraints, or as a set of restrain ts between
multiple instances of polymer entities, reflecting
ambiguities in the crosslinking-MS dataset (e.g.,
an intra-molecular crosslink vs. an inter-molecular
homodimer crosslink).
Data quality metrics based on crosslinking-MS 

data include the total number of crosslinks in the 
dataset, the number of crosslinks matched to the 
struct ure, and the number of crosslinks matched
to restraints (Supplementary Table 2A, Figure 2A). 
Integrative structure model metrics based on 
crosslinking-MS data include restraint types,
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distograms (i.e., histogram plots of distances), and 
satisfaction rates (Supplementary Table 2B, 
Figure 2B). 
Quality of 3DEM data and fit of integrative
structure models to data

3DEM, typically cryo-electron microscopy 
(cryoEM) and cryo-electron tomography (cryoET), 
is a powerful technique for studying 3D structures 
of biomolecules at low-to-medium-to-high 
resolution. CryoEM involves rapidly freezing the 
sample in a thin layer of vitrified ice and then
imaging it using a transmission electron
microscope [53]. CryoET allows studies of macro-
molecular structure and organization wi thin cells
or tissues [54]. Both techniques can provide 
unprecedented insights into the structure and func-
tion of biological systems, particularly for 
megadalton-scale biomolecular machines [55]. 
Following recommendations developed by the 

wwPDB 3DEM Validation Task Force [56] and com-
munity guidelines [28,57] for validation of structures 
generated using cryoEM and cryoET, we provide a 
set of numerical metrics and plots obtained from
either EMDB [5] or calculated with the Validation 
Analysis (va) software [58] (Figure 2B). Assess-
ment of the fit of a 3D structural model to 3DEM 
map data is currentl y available only for atomic
structures.
The data quality criteria for 3DEM data include 

map visualization, map analysis, and Fourier-Shell 
Correla tion (FSC) validation metrics
(Supplementary Table 3A). Structural model 
criteria based on 3DEM data include map-model 
fit, Q-score, and atom inclusion (Supplementary 
Table 3B, Figure 2B). 
Local Geometry Assessment (i.e., 
Integrative Structure Model Quality)

Stereochemistry 
Analysis of structural model stereochemistry is 

well established for 3D biostructures comin g from
X-ray, NMR, or 3DEM [59]. This analysis highlights 
potential inaccuracies by identifying statistically sig-
nificant deviations in stereochemical features, such 
as bond lengths and angles, from reference values 
derived from theory or from representative high-
quality residues in high-resolution protein and 
nucleic aci d structures (e.g., X-ray protein struc-
tures with resolution limits better than 2.0 A) [60]. 
Care is needed, however, in interpreting outliers 
as either actual errors or accurate depi ctions that
deviate from the norm [59]. While the stereochem-
istry of atomic integrative structure models can be 
assessed using exi sting tools, such as MolProbity
[60], many integrative structure models are 
coarse-grained or multi-scale and cannot therefore 
be evaluated with existing tools.
7

We currently assess the stereochemistry of 
integrative structure models as follows. For 
components represented at atomic resolution, we 
follow the procedure adopted long ago by the
wwPDB [61], relying on MolProbity [60]. In particu-
lar, we identify deviations of a model from accepted 
values for bond lengths, bond angles, dihedral 
angles, improper dihedral angles, and atomic over-
laps. For coarse-grained and multi-scale compo-
nents, we highlight overlaps between pairs of 
coarse-grained beads or between a coarse-
grained bead and an atom. This test is analogous 
to estimating interatomic clashes within atomic 
models. A total excluded volume violation of a 
model is defined as the percentage of overlapping
pairs of beads; a pair of beads is overlapping when
the center-to-center distance between the beads is
smaller than the sum of their radii, as specified by
the depositor.

Local model precision
If a structure is represented as a collection of 

conformations, we can define local model 
precision (uncertainty) as the corresponding local 
variability among the deposited models. This 
variability is quantified by the Precision for
Integrative Structural Models (PrISM) program
[62], which efficiently identifies and visualizes 
regions of high- and low-precision in an integrative 
structural model. While the depositor can provide 
already superposed models, superposition can also 
be performed by the validation pipeline. PrISM first 
computes root-mean-square fluctuations (RMSFs; 
spreads) of individual particles in the model collec-
tion, then partitions the model into volumes at sev-
eral relative levels of precision using spati al
clustering of particles with similar precisions. The
validation report includes a visualization of high-
and low-precision regions provided by PrISM
(Figure 2D). 

Summary Tab le
To ensure open access to all information required 

to reproduce and evaluate integrative structure 
models, we have designed a validation summary 
table for integrative modeling, with input from the 
community. This table summarizes the input 
information, model representation, sampling
protocol, software tools, and validation output in
the human-readable PDF format (Supplementary 
File 2). The table is inspired by X-ray [29],  N  MR
[30],  E  M [56], and SA S [24] validation summary 
tables. A validation summary table for every entry 
in the PDB-IHM is generated during the deposition. 
Depositors are encouraged to include these tables
in their respective publications to supplement infor -
mation available to editors, reviewers, and readers. 
A recently published integrative structure model 
(9A05) supplemented with such a table provides a
proof-of-concept [63].



A.O. Zalevsky, B. Vallat, B.M. Webb, et al. Journal of Molecular Biology xxx (xxxx) xxx
Implementation 
The IHMValidation pipeline is implemented as a 

Python package. To simplify dependency 
management for the third-party validation software
(e.g., MolProbity [60], ATSAS [64], mzidentml-
reader, va [58], and PrISM [62]) and deployment, 
the IHMValidation pipeline is executed in an App-
tainer (previously Singularity [65]) virtual container. 
The IHMValidation standalone validation server has 
been built using the open source DERIVA [66] sci-
entific asset management pl atform.

Future Directions 
Future expansions of the IHMValidation pipeline 

will (i) reflect additional recommendations, 
including those from the Förster resonance energy 
transfer (FRET) and hydrogen/deuterium 
exchange MS (HDX MS) communities; (ii) include 
additional validation criteria, such as Bayesian 
likelihoods for the data given the structure; and (iii) 
represent estimates of structure uncertainty based 
on the variability among alternative models 
satisfying input information. We also welcome 
community contributions in the form of new 
methods and tools for the assessment of 
in tegrative structure models. We are committed to
incorporating standards and tools for assessing
integrative structure models and data as soon as
corresponding communities develop them.
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B., Lütteke, T., Otwinowski, Z., Perrakis, A., Richardson, 
J.S., Sheffler, W.H., Smith, J.L., Tickle, I.J., Vriend, G.,

Zwart, P.H., (2011). A new generation of crystallographic

validation tools for the protein data bank. Structure 19,

1395–1412. https://doi.org/10.1016/j.str.2011.08.006. 
[30]. Montelione, G.T., Nilges, M., Bax, A., Güntert, P., 

Herrmann, T., Richardson, J.S., Schwieters, C.D., 
Vranken, W.F., Vuister, G.W., Wishart, D.S., Berman, 
H.M., Kleywegt, G.J., Markley, J.L., (2013).

Recommendations of the wwPDB NMR validation task

force. Structure 21, 1563–1570. https://doi.org/10.1016/j. 
str.2013.07.021. 
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