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Abstract

PDB-IHM is a branch of the Protein Data Bank (PDB), a Worldwide Protein Data Bank (wwPDB) Core
Archive, that expands its scope by allowing for additional biomolecular structure representations and
types of experimental information (i.e., integrative/hybrid structure models). As of October 2025, PDB-
IHM contained 374 entries, benefitting from multi-scale and multi-state representations and 17 types of
experimental data. These structure models are assigned PDB accession codes and are archived along-
side other experimental structures in the PDB. Rigorous interpretation of a structure model requires
assessment of underlying data quality, consistency with the input data, and estimates of positional uncer-
tainty of its components. Herein, we present the IHMValidation pipeline (https://validate.pdb-ihm.org;
https://github.com/salilab/IHMValidation) based on recommendations from the wwPDB Integrative Meth-
ods Task Force plus the small-angle scattering (SAS), chemical crosslinking mass spectrometry
(crosslinking-MS), and cryo-electron microscopy and tomography (3DEM) communities. The IHMValida-
tion report (available in both PDF and HTML formats) comprises six sections: (i) overview; (ii) model
details; (iii) data quality assessments; (iv) local geometry assessments (i.e., model quality); (v) fit of the
model to the data used to generate it; and (vi) fit of the model to the data used for validation. Future expan-
sions of the IHMValidation pipeline will: (i) reflect recommendations coming from additional experimental
communities, including Forster resonance energy transfer (FRET) and hydrogen/deuterium exchange MS
(HDX-MS); (ii) include other validation criteria, such as Bayesian likelihoods for the data; and (iii) repre-
sent estimates of structure model uncertainty based on the variation among alternative models satisfying
input data.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecom-
mons.org/licenses/by/4.0/).

Introduction

Protein Data Bank (PDB) [1-3] is the single global
archive of three-dimensional (3D) structure models
of biological macromolecules and their complexes
determined by X-ray crystallography (MX) (82% of
holdings as of October 2025), three-dimensional
cryo-electron microscopy (3DEM, 12%), nuclear
magnetic resonance (NMR) spectroscopy (6%),
and other techniques (<1%), totalling more than
243,000 entries. The PDB is one of three jointly
managed Worldwide Protein Data Bank (wwPDB)
[4] Core Archives, the other two being the Electron
Microscopy Data Bank (EMDB) [5] and the Biologi-
cal Magnetic Resonance Data Bank (BMRB) [6].
Recently, the scope of the PDB was expanded by
PDB-IHM (PDB Integrative and Hybrid Methods;
previously PDB-Dev [7,8]) [9]. PDB-IHM is a branch
of the PDB that allows for additional biomolecular
structure representations and types of experimental
information, supporting deposition, validation, archi-
val, and dissemination of integrative/hybrid struc-

ture models (hereafter abbreviated as “integrative
structure models”).

Integrative modeling aims to maximize accuracy,
precision, completeness, and explanatory power of
a 3D structural model by combining multiple types
of input information: experimental data (e.g., NMR
data, chemical crosslinks), physical theories (e.g.,
stereochemistry quantified by a molecular
mechanics force field), statistical preferences (e.g.,
atomic statistical potentials extracted from known
structures), and previous structural models (e.g.,
structural models of complex subunits). For
example, an integrative structure model is often
computed using a 3DEM map, crosslinks
determined by chemical crosslinking mass
spectrometry (crosslinking-MS), and
stereochemistry restraints. Depending on the
resolution of the data and the scale of the modeled
system, a modeler may choose to compute a
model of any one of several types, including
coarse-grained, multi-scaled, multi-state, and
ordered-state [10]. To annotate new experimental
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data types and model representations, the wwPDB
PDB-IHM team developed the IHM extension of
the PDBx/mmCIF dictionary, called IHMCIF [11].

As of October 2025, PDB-IHM contained 374
publicly released entries (Figure 1A). Most
(~74%) of these entries are multi-chain (homo-
and hetero-oligomeric) structures; 56% of the
entries have a molecular weight greater than
80 kDa, with an overall range from 5.8 kDa to 3.8
MDa (Figure 1B). This distribution is similar to that
for the main PDB archive.

PDB-IHM entries vary in the types of
experimental data on which they are based.
Unlike the main PDB archive, which primarily
consists of structures determined based on the

MX, 3DEM, and NMR data, the current PDB-IHM
entries rely on 17 different types of experiments,
including various forms of electron microscopy
(EM), crosslinking-MS, small-angle scattering
(SAS), NMR spectroscopy, mutagenesis, single-
molecule Fbérster resonance energy transfer
(smFRET), hydrogen—deuterium exchange MS
(HDX-MS), X-ray diffraction, electron
paramagnetic resonance (EPR), DNA footprinting,
and hydroxyl radical footprinting (HRF). Overall,
83 unique combinations of these input data types
were used to compute the current PDB-IHM
structure models (Figure 1D).

Integrative modeling generally benefits from
previously determined starting structures for
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Figure 1. PDB-IHM contents. (A) Growth in the number of integrative structure models in PDB-IHM (black filled
circles). For comparison, the initial growth in the number of 3DEM structures between 1996 and 2005 is also shown
(filled green circles). We excluded the period from 1991 to 1995, because only one 3DEM structure was deposited in
that timeframe. (B) Molecular weight of the PDB-IHM structure versus number of polymer chains. (C) Venn diagram of
PDB-IHM entries coming from 3DEM, SAS, and crosslinking-MS data; collectively, they represent 85% of all released
entries. (D) Experimental methods and structural data sources used to generate PDB-IHM structures are presented in
a matrix. Each row corresponds to a source of input information, including crosslinking mass spectrometry
(crosslinking-MS), various forms of electron microscopy (EM), nuclear magnetic resonance (NMR) spectroscopy,
small-angle scattering (SAS), single-molecule and ensemble Fdrster resonance energy transfer (smFRET, Ensemble
FRET), hydrogen—deuterium exchange MS (HDX-MS), electron paramagnetic resonance (EPR), and hydroxyl radical
footprinting (HRF). The number of entries with a given type of input information is plotted on the right. Each column
represents a particular combination of input information. Counts in the top section indicate the number of sources of
input information in the column; at the bottom, the number of entries with a given combination of sources of input
information.
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individual components of the modeled system
[10,12,13]. Half of the PDB-IHM structure models
were generated using at least one starting structure;
conformations of these structures can be fixed or
flexible during integrative modeling. Starting struc-
tures can be determined by any structural biology
method, including experimental methods (e.g., X-
ray crystallography, NMR spectroscopy, 3DEM)
and computational methods (e.g., comparative
modeling, de novo structure prediction [14]). Con-
veniently, the atomic coordinates of these starting
structures can often be downloaded from the PDB
[2], PDB-IHM [9], Model Archive [15], or other public
domain repositories. A substantial portion of PDB-
IHM entries (43%) contain at least one polymer
component extracted from an experimental struc-
ture archived in PDB (~41%) or a PDB-IHM integra-
tive structure model (~6%). Similarly, ~29% of the
PDB-IHM entries also contain at least one compo-
nent polymer structure computed by comparative
modeling (~16%), using software tools such as
MODELER [16], SwissModel [17], and Rosetta
[18], or de novo structure prediction (~18%), using
programs such as RoseTTAFold [19] and Alpha-
Fold2/3 [20,21]. We anticipate a rapid increase in
the use of de novo models due to their availability,
coverage, and accuracy. This trend has already
been observed with recent PDB-IHM depositions
(74% of entries released in 2025).

Rigorous interpretation of a structure requires
assessment of underlying data quality,
consistency with the input data, and estimates of
positional uncertainty of the generated Cartesian
coordinates. Herein, we present the IHMValidation
pipeline based on recommendations from the
wwPDB Integrative/Hybrid Methods Task Force
(IHMtf) [22,23] plus the SAS [24,25], crosslinking-
MS [26,27], and 3DEM [28] communities. We prior-
itized implementing support for SAS, crosslinking-
MS, and 3DEM data because they accounted for
~85% of the PDB-IHM entries (Figure 1C).

Results and Discussion

Validation report

Inspired by previous efforts on structural
validation [24,28-30], we organized information
about each structure model, including experimental
and structural data used for structure model gener-
ation, model representation, details of the modeling
protocol, and validation metrics, into two key docu-
ments: the full validation report and a summary
table (Supplementary Files 1 and 2). The full valida-
tion report includes extended statistics and detailed
plots. The summary table is a concise description of
the full validation report, without graphical displays.
The IHMValidation pipeline generates human-
readable reports in both PDF and HTML formats.

The validation report is organized into six
sections: (i) overview; (ii) model details; (iii) data

quality assessments; (iv) local geometry
assessments (i.e., model quality); (v) fit of the
model to the data used to generate it; and (vi) fit
of the model to the data used for validation. Each
section contains validation metrics presented as
tables with numerical values and plots. Selection
of metrics depends on the type of structural
(atomic, coarse-grained, multi-scale) and the type
of experimental data used to generate the
integrative structure model, following
recommendations from the IHMtf [22,23] and
data-generating communities [24-28]. Next, we
describe each section.

Overview

This section provides an “executive” summary of
the structure content and key quality indicators.
The summary indicates serious problems with the
structure, if any (Figure 2). The section contains
plots of key metrics, divided into four categories,
one for each validation criterion: (i) data quality
assessments (Figure 2A, B); (ii) local geometry
assessments (i.e., model quality); (iii) fit of the
model to the data used to generate it (Figure 2B,
C) and (iv) fit of the model to the data used for
validation.

Model details

This section contains tables with detailed
information about (i) the entities present in the
structure (e.g., biopolymers and ligands) and their
representation (i.e., atomic, coarse-grained, multi-
scale, and multi-state); (ii) a description and links
to datasets for computing the structure; and (iii) a
summary of the modeling methodology
(Supplementary File 1).

Quality of data and fit of integrative structure
models to data

Annotations can help depositors, biocurators, and
data consumers identify problems with the
underlying data, including artifacts resulting from
experiments and data conversions into
standardized formats.

With the data quality assessment in hand, we
proceed to assess the integrative model against
the data. IHMValidation distinguishes between two
types of assessments. For both types, we use the
same criteria to quantify the model-data match.
First, the model is assessed against the data used
to generate it. Ideally, the model should satisfy all
of the input data within the specified data
precision. Second, a model can be assessed with
respect to holdout data (i.e., data not used to
compute the model), whether reported in the
current study or previously published. Large
deviation(s) of a model from holdout data can
reveal structure overfitting [31,32], particularly when


move_f0010

A.O. Zalevsky, B. Vallat, B.M. Webb, et al. Journal of Molecular Biology xxx (Xxxx) Xxx

¢ 8Zz9

Model fit for SASDC29, model 1

A 9A8W
Crosslinking-MS Data Quality

Matched
PXD053341 Mapped to matching entities
Total

B 9A0J

Residue pairs
Model group/Ensemble 1 +
0 20 40 60 80 100
Satisfaction rate [%]

251 (88.38%)
268 (94.37%)
i 284

o Experimental data
— Model fit

Crosslink satisfaction

Log I()

64.29 % -2

3DEM resolution 3+

EMD-10293 4.90A
EMD-10292 4.40A
EMD-10291 /504

[— t t t t t t t | ’

0 10 20 30 40 50 60 70 80

Resolution [A]
Q-score

9A1G

Model 1/EMD-10292
Model 1/EMD-10291

-1

Model 1/EMD-10293J

-0.5

:\A' 'M(‘*‘\(““\'\\; {

X

N B T
= 2 Q8 g f??‘ &

--- Satisfied --- Violated

EMD-10292

Figure 2. Typical issues highlighted by the IHMValidation reports. (A) The number of crosslinks used for
modeling versus those present in the original dataset. (N.B.: Crosslinking-MS experiments can identify thousands of
proteins, of which only a fraction are used for generating a particular PDB-IHM entry). For 9A8W, 268 of 284
crosslinks reported in the PRIDE dataset (PXD053341) were identified between proteins of interest, and only 251 of
them were used for integrative modeling due to truncations of flexible regions [67]. (B) Fit of structural model to
crosslinking-MS and 3DEM data. Integrative structure models are often computed using low-to-medium resolution
data (e.g., crosslinking-MS and mid-resolution cryo-EM maps). (N.B.: Lower resolution 3DEM maps (~5 A) typically
exhibit average per residue Q-scores of ~0.3 [68]). Integrative modeling of 9A0J [69] utilized three different SDEM
maps (EMDB IDs: EMD-10291, EMD-10292, EMD-10293) to generate a more complete model that covers as many
residues as possible. Spatial restraints derived from crosslinking-MS data provided complementary information about
the relative positions of subunits across the maps. (C) Fit of structure to SAS data. At first glance, the agreement
between the structure 8ZZ9 and the SAS data (SASBDB ID SASDC29) is unacceptably low (* ~ 25). However, the
authors rationalized the differences in the high-q region by the intrinsic dynamics of the protein, which was confirmed
using NMR spectroscopy [70]. (D) Regions of low-(red) and high-(blue) local precision in the two collections of multi-
state models of human guanylate-binding protein 1 (hGBP-1, 9A1G), annotated and visualized using PrISM. Two
deposited collections of models (100 and 106 individual models in states M; and My, respectively) with substantially
different representative structures for each state and noticeable differences in regions of high and low precision are
shown [71].

it is generated from a sparse dataset. Currently, we
report assessments based on data used to gener-
ate the integrative structure model, while holdout
assessment is planned for the next IHMValidation
release.

Quality of SAS data and fit of integrative
structure models to data

Small-angle scattering (SAS) of X-rays (SAXS) or
neutrons (SANS) by macromolecules in solution
enables the characterization of their size and
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shape. In addition, as the SAS measurement yields
the time and ensemble average of the molecules
present in the solution, it provides information on
structural heterogeneity relating to conformational
or oligomeric state(s) present in the sample [33—
36]. One advantage of SAS experiments is that
the characterized system is in solution. While
in situ measurements are sometimes feasible, most
studies involve samples purified to high purity. SAS
data can be useful for integrative modeling, espe-
cially for large and/or flexible macromolecules that
may be difficult to study using other structural tech-
niques alone. For example, the atom-pair distance
distribution function (PDDF) computed from SAS
data can be used as a spatial restraint for integrative
structure modeling and/or to validate the resulting
models [37-39].

The SAS portion of an IHMValidation report
adheres to the wwPDB SAS Validation Task
Force (SASvif) recommendations [24]. PDB-IHM
depositors are required to submit their SAS data
to SASBDB [40], which serves as the source of
SAS data and quality metrics in sasCIF format
[41] as recommended by the SASvtf [24].

For data quality assessment the scattering profile
is presented with data quality metrics, including
Guinier analysis for the evaluation of the radius of
gyration, R, PDDF analysis for Ry and maximum
particle dimension estimates (Dpax) as well as
associated plots, e.g., Porod-Debye and Kratky
plots that provide additional qualitative information
relating to particle compactness, flatness, flexibility
or extensibility (Supplementary Table 1A). PDB-
IHM  model metrics based on SAS data
(Supplementary Table 1B) include plots of SAS
profiles calculated for structures and their
goodness-of-fit to experimental data in the form of
the reduced »? with its associated error-weighted
residual difference plot between model and
experiment (Figure 2C), and p-values from the
Correlation Map (CorMap) test.

Quality of crosslinking-MS data and fit of
integrative structure models to data

Crosslinking-MS can identify pairs of spatially
proximal residues in a protein or protein complex
[42]. After the sample is exposed to a chemical
crosslinker, it is proteolytically digested (usually with
trypsin), followed by detecting crosslinked pairs of
residues by MS. These pairs can be converted into
spatial restraints for integrative modeling and/or for
validation of the resulting models [43]. The develop-
ment of crosslinking reagents of varying length and
chemical reactivity enables the study of composi-
tionally and structurally homogeneous and hetero-
geneous protein complexes in vitro and in situ
[44,45]. Moreover, the approach can also be
applied to nucleic acids and their complexes with
proteins [46].

The crosslinking-MS community is in the process
of establishing its data standards [26,27], including
protocols for validating crosslinking-MS data and
structures. We propose here a set of metrics and
visualization approaches to facilitate further discus-
sion about community standards for validating this
type of data, in coordination with members of the
crosslinking-MS [27] community and the PRIDE
database for proteomics data, including
crosslinking-MS [47].

In the IHMValidation report, we first note the
numbers of reported and utilized crosslinks.
Crosslinking-MS data are retrieved from the
PRIDE database via the Crosslinking-API or
directly from a data file in the open standard
mzldentML format (version 1.2 or 1.3) [48]. We then
compare proteins reported in the <DBSequence>
element in mzldentML with those reported in the
IHMCIF file and match the corresponding cross-
links. Percentages of crosslinks present in the IHM-
CIF file with respect to the crosslinking-MS data in
the mzldentML file are reported. Low percentage
values indicate a potential problem with the omis-
sion of data, although sometimes only a fraction of
crosslinks from an in situ or in vivo dataset is rele-
vant for the current molecular system.

There is currently no generally accepted
approach for performing a goodness-of-fit
assessment between a 3D structural model and
crosslinking-MS data. Widely used metrics/
strategies include: (i) Euclidean or surface-based
distances [49]; (ii) mapping of crosslinks onto cross-
linked functional groups or Ca atoms [50]; (iii) cross-
link satisfaction by a single conformation or a
collection of conformations [51]; and (iv) continuous
probabilistic scores as opposed to sharp cutoffs
[52].

IHMValidation compares the structural model
against the crosslink restraints used for integrative
modeling as submitted by depositors. We provide
a summary table listing restraints and
corresponding user-provided thresholds. Next, we
assess restraint satisfaction against the thresholds
using Euclidean distances. The I[HMValidation
report attempts to account for modeling
complexity during the assessment. For example, a
single crosslink can be represented as a
combination of lower and upper-bound distance
restraints, or as a set of restraints between
multiple instances of polymer entities, reflecting
ambiguities in the crosslinking-MS dataset (e.g.,
an intra-molecular crosslink vs. an inter-molecular
homodimer crosslink).

Data quality metrics based on crosslinking-MS
data include the total number of crosslinks in the
dataset, the number of crosslinks matched to the
structure, and the number of crosslinks matched
to restraints (Supplementary Table 2A, Figure 2A).
Integrative structure model metrics based on
crosslinking-MS data include restraint types,
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distograms (i.e., histogram plots of distances), and
satisfaction rates (Supplementary Table 2B,
Figure 2B).

Quality of 3DEM data and fit of integrative
structure models to data

3DEM, typically cryo-electron microscopy
(cryoEM) and cryo-electron tomography (cryoET),
is a powerful technique for studying 3D structures
of biomolecules at low-to-medium-to-high
resolution. CryoEM involves rapidly freezing the
sample in a thin layer of vitrified ice and then
imaging it using a transmission electron
microscope [53]. CryoET allows studies of macro-
molecular structure and organization within cells
or tissues [54]. Both techniques can provide
unprecedented insights into the structure and func-
tion of biological systems, particularly for
megadalton-scale biomolecular machines [55].

Following recommendations developed by the
wwPDB 3DEM Validation Task Force [56] and com-
munity guidelines [28,57] for validation of structures
generated using cryoEM and cryoET, we provide a
set of numerical metrics and plots obtained from
either EMDB [5] or calculated with the Validation
Analysis (va) software [58] (Figure 2B). Assess-
ment of the fit of a 3D structural model to 3DEM
map data is currently available only for atomic
structures.

The data quality criteria for 3DEM data include
map visualization, map analysis, and Fourier-Shell
Correlation (FSC) validation metrics
(Supplementary Table 3A). Structural model
criteria based on 3DEM data include map-model
fit, Q-score, and atom inclusion (Supplementary
Table 3B, Figure 2B).

Local Geometry Assessment (i.e.,
Integrative Structure Model Quality)

Stereochemistry

Analysis of structural model stereochemistry is
well established for 3D biostructures coming from
X-ray, NMR, or 3DEM [59]. This analysis highlights
potential inaccuracies by identifying statistically sig-
nificant deviations in stereochemical features, such
as bond lengths and angles, from reference values
derived from theory or from representative high-
quality residues in high-resolution protein and
nucleic acid structures (e.g., X-ray protein struc-
tures with resolution limits better than 2.0 A) [60].
Care is needed, however, in interpreting outliers
as either actual errors or accurate depictions that
deviate from the norm [59]. While the stereochem-
istry of atomic integrative structure models can be
assessed using existing tools, such as MolProbity
[60], many integrative structure models are
coarse-grained or multi-scale and cannot therefore
be evaluated with existing tools.

We currently assess the stereochemistry of
integrative structure models as follows. For
components represented at atomic resolution, we
follow the procedure adopted long ago by the
wwPDB [61], relying on MolProbity [60]. In particu-
lar, we identify deviations of a model from accepted
values for bond lengths, bond angles, dihedral
angles, improper dihedral angles, and atomic over-
laps. For coarse-grained and multi-scale compo-
nents, we highlight overlaps between pairs of
coarse-grained beads or between a coarse-
grained bead and an atom. This test is analogous
to estimating interatomic clashes within atomic
models. A total excluded volume violation of a
model is defined as the percentage of overlapping
pairs of beads; a pair of beads is overlapping when
the center-to-center distance between the beads is
smaller than the sum of their radii, as specified by
the depositor.

Local model precision

If a structure is represented as a collection of
conformations, we can define local model
precision (uncertainty) as the corresponding local
variability among the deposited models. This
variability is quantified by the Precision for
Integrative Structural Models (PrISM) program
[62], which efficiently identifies and visualizes
regions of high- and low-precision in an integrative
structural model. While the depositor can provide
already superposed models, superposition can also
be performed by the validation pipeline. PrISM first
computes root-mean-square fluctuations (RMSFs;
spreads) of individual particles in the model collec-
tion, then partitions the model into volumes at sev-
eral relative levels of precision using spatial
clustering of particles with similar precisions. The
validation report includes a visualization of high-
and low-precision regions provided by PriISM
(Figure 2D).

Summary Table

To ensure open access to all information required
to reproduce and evaluate integrative structure
models, we have designed a validation summary
table for integrative modeling, with input from the
community. This table summarizes the input
information, model representation, sampling
protocol, software tools, and validation output in
the human-readable PDF format (Supplementary
File 2). The table is inspired by X-ray [29], NMR
[30], EM [56], and SAS [24] validation summary
tables. A validation summary table for every entry
in the PDB-IHM is generated during the deposition.
Depositors are encouraged to include these tables
in their respective publications to supplement infor-
mation available to editors, reviewers, and readers.
A recently published integrative structure model
(9A05) supplemented with such a table provides a
proof-of-concept [63].
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Implementation

The IHMValidation pipeline is implemented as a
Python package. To simplify dependency
management for the third-party validation software
(e.g., MolProbity [60], ATSAS [64], mzidentml-
reader, va [58], and PrISM [62]) and deployment,
the IHMValidation pipeline is executed in an App-
tainer (previously Singularity [65]) virtual container.
The IHMValidation standalone validation server has
been built using the open source DERIVA [66] sci-
entific asset management platform.

Future Directions

Future expansions of the IHMValidation pipeline
will (i) reflect additional recommendations,
including those from the Foérster resonance energy
transfer  (FRET) and  hydrogen/deuterium
exchange MS (HDX MS) communities; (ii) include
additional validation criteria, such as Bayesian
likelihoods for the data given the structure; and (iii)
represent estimates of structure uncertainty based
on the variabilty among alternative models
satisfying input information. We also welcome
community contributions in the form of new
methods and tools for the assessment of
integrative structure models. We are committed to
incorporating standards and tools for assessing
integrative structure models and data as soon as
corresponding communities develop them.
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