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INTRODUCTION

The a-helix is one of the principal motifs in native proteins. Its highly

geometric structure and fast folding makes it an excellent model system

to study folding energetics. Although a-helices are stabilized by i to i 1

4 backbone hydrogen bonds, different amino acids have different effects

on the helix stability. This difference in stability is referred to as the helix

propensity of the amino acid. From an entropic point of view, helix for-

mation restricts the configurational freedom of both the backbone and

the side chain rotations. Alanine, with its small side chain, is a strong

helix former, leucine and arginine are helix-indifferent, and all other

amino acids have a destabilizing effect. Hence, it has been proposed that

the loss of configurational entropy accounts for the thermodynamic cost

responsible for observed helix-formation propensities.1,2 Thermodynamic

helix-formation propensities have been studied experimentally and meas-

ured as differences in the Gibbs free energy of unfolding using host-guest

schemes. In these systems an alanine-based peptide is used as the ‘‘host’’

and point substitutions with another amino acid residue X are intro-

duced as ‘‘guests’’.

To calculate helix-formation propensities using computational methods

we studied the process of extending a 12-residue a-helix using a

mechanical force. The DG for the process was estimated for a reference

12-alanine peptide (Ala12) and for peptides in which two of the 12 resi-

dues were substituted by the same nonalanine amino acid X referred to

as the guest. We refer to this system as the Ala10X2 host-guest peptide

(sequence Ala3XAla4XAla3). Additionally, the difference between the free

energies of extending the Ala10X2 and Ala12 helices, DDG, was calculated.

The value of DDG, expressed on a per guest residue basis (DDG/2), can

be interpreted as a measurement of the helix stabilization propensity of

each amino acid type.

The calculation of free energy differences DGx plays a fundamental role

in the study of molecular processes such as protein folding, ligand

binding and solubility. Several computational methods, including free

energy calculations,3–5 thermodynamic integrations,6–10 and free energy
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ABSTRACT

Jarzynski’s equality (Jarzynski, Phys Rev E

1997; 56:5018 and Jarzynski, Phys Rev Lett

1997; 78:2690) relates equilibrium free

energy differences between two states A and

B to the work done when the system is

driven repeatedly and irreversibly from an

equilibrium state A to equilibrium state B.

We present calculations of helix propen-

sities using a novel procedure based on this

equality. In particular, a work probability

distribution is built based on combinations

of multi-step trajectories that give represen-

tative work distributions without requiring

computing an unreasonable large number

of trajectories between states. A small num-

ber of trajectories (15) are used to construct

a distribution that contains millions of

work values. This distribution is used to

calculate DGAB using Jarsynski’s equation.

To apply and test this method, we used as a

model system a dodeca-alanine helix, ana-

lyzing its extension using mechanical force.

This helix was used as the basis of a host

guest system in which two of the 12 resi-

dues are substituted by some other amino

acid (as the guests). The differences

between the unfolding free energies of the

substituted peptides and the all-alanine

peptide provided values for DDG that can

be interpreted as the helix propensities of

each amino acid. Results show good correla-

tion with the experimental measurements

of Baldwin and coworkers (Chakrabartty

et al., Protein Sci 1994; 3:843–852).
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perturbation11–13 have been used before to estimate free

energy differences between equilibrium states. However,

they require that all steps of the transition be carried out

at or close to equilibrium, making the calculations diffi-

cult to perform. Furthermore, calculations using these

methods suggest that comparisons between states or

processes with different numbers of atoms are intrinsi-

cally inaccurate. Comparing the unfolding of an Ala12

helix with that of helices of other sequences falls into this

category.

It has been shown that for atomic systems that

involve large fluctuations the work necessary to move

the system between two equilibrium states A and B will

vary from one repetition to another. As a consequence

of the second law of thermodynamics, the average work

of a large number of repetitions carried out irreversibly

is greater than the thermodynamic change in free

energy between states A and B (hWi � DG, where h. . .i
denotes average). Recently, Jarzynski has shown that for

a system driven between two equilibrium states A and

B by doing work.

e�bW
� �

¼ e�bDG;

(where b 5 1/kT)14,15 even if during the process the

system is far from equilibrium. This remarkable equa-

tion provides the basis for estimating free energy differ-

ences from data obtained for an irreversible process,

provided that enough repetitions are carried out. Since

1997, when Jarzynski first presented this result, it has been

rederived in many frameworks16–18 and tested experi-

mentally.19–21 In the first reported experimental work,

Liphardt et al.19 performed single molecule experiments

to mechanically unfold a single RNA molecule. Application

of Jarzynski’s equality allowed them to recover DG from a

set of irreversible trajectories.

This equation also leads to new approaches for esti-

mating free energies using molecular dynamics (MD)

simulations to construct the work distribution P(W).

MD simulations have already been used to test this rela-

tion for simple systems,22 as well as for some more com-

plex systems.23–26 However, for a system driven irrever-

sibly between two equilibrium states A and B by a force,

the computational time needed to access a representative

work distribution may be prohibitively high, especially if

the two states are well-separated energetically.3

In the present work, helix-formation propensities for

different amino acids were calculated using a novel pro-

cedure based on Jarzynski’s equality: Multi-step trajectory

combination (MSTC). In this method, path ensembles

are constructed and used to obtain representative work

distributions for process in which the system is driven

out of equilibrium, without requiring an unreasonably

large number of trajectory simulations. The general

scheme consists of dividing the trajectory between the

initial and final states into m steps, equilibrating the

system at the end of each step. After generating n trajec-

tories, new paths are generated by combining steps of

different trajectories, taking advantage of the fact that,

because of equilibration, different trajectories at the end

of each step share microstates. In this procedure, if we

generate n trajectories of m steps each, they can be com-

bined to produce nm trajectories. This means that if one

computes, for example, 15 full trajectories, each divided

into 10 steps, equilibrating at the end of each step, one

can obtain a distribution of work values corresponding

to 1510 (�6 3 1011) full trajectories. Even if equilibration

after each step increases the computational time by a fac-

tor of 10, the gain in computational efficiency will still

be close to a factor of 109. Computation of DG over the

nm trajectories is equivalent to using Jarzynski’s equation

to compute DGm, the value of the free energy of each of

the m steps averaged over the n trajectories, and adding

them to obtain the total DG value (see appendix).

METHODOLOGY

Unfolding helices by force

All simulations were performed using the program

CHARMM.27 The complete system used was a 12-alanine

helix solvated in a box of TIP3 water molecules of dimen-

sions 49.67 3 27.94 3 27.94 Å (�1250 TIP3 molecules).

The total number of atoms in the system, including hydro-

gens, was 3856; periodic boundary conditions were used

in all calculations. Simulations were performed in a con-

stant number of atoms, volume and energy (NVE) ensem-

ble. The initial system was pre-equilibrated at a tempera-

ture of 300 K.

Extension of the helices was carried out by applying a

force along the line connecting the Ca of the C-terminus

and the Ca of the (acetylated) N-terminus. The C-termi-

nal Ca was fixed and the N-terminal Ca was attached to

a moving target point through a soft harmonic constraint

with k 5 5 kcal/(mol Å2). To stretch the helix, the target

point was pulled in steps of 0.05 Å. After each step, the

system was allowed to equilibrate for 100 ps. Hereafter,

these are referred to as small steps. When 20 small steps

were completed, equivalent to a 1 Å extension, the sys-

tem was equilibrated for a longer time (1 ns). This will

be referred to as a long step (Figure 1). The time neces-

sary to reach equilibrium at the end of the long steps

was determined empirically. Different times were tested

monitoring the temperature and the energy until these

values became stable and no structural stress was present

in the structure. The equilibration time was then set to

twice the time necessary for stability. During these equili-

brations, the average properties of the system (macro-

state) fluctuate about the same values in the different tra-

jectories. Thus, even if the time is not long enough for

the peptides to sample some of the same conformations

in all trajectories, the states accessed in the different tra-
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jectories do belong to the same ensemble (macrostate).

The total number of long steps performed (15 steps) is

equivalent to stretching the molecule 15 Å. Each 15 Å

extension constitutes a trajectory. (Subdivision of trajec-

tories has been used before for sampling rare events in

the context of boundary value formation for barrier tran-

sitions,28 but this study is not relevant to the method

presented here.)

For each trajectory the force exerted over the system

was calculated as F ¼ �kðrCA � rref Þ, where rCA is the

position (x, y, z) of the Ca of the N-terminus at each

step and rref corresponds to the position of the target

point where the harmonic constraint is set. The variable

rref increases by 0.05 Å in each small step corresponding

to a stretching velocity of 0.05 Å/ps. The work done

on the system for each long step is given by

W ¼
R xCA;Nþ1

xCA;N
F � dxCA, were F is the force projected onto

the pulling axis (x-axis). Force and work behavior for

various trajectories are shown in Figure 2. The calculated

force shows the fluctuating nature of the system. Work

values show great variability from trajectory to trajectory.

Both positive and negative values of the work are

observed. The positive portions of the curves correspond

to events in which energy is input to the system to drive

the unfolding process. Negative work values result when

the helix is already unstable and pushes against the

‘‘spring’’ to continue unfolding.

MD calculations were used to compute 15 work values

for each trajectory: one value for each of the 15 long

(1 Å) steps. For each peptide, 15 trajectories were simu-

lated. Microstates at the end of each long step for differ-

ent trajectories belong to the same ensemble, after ensur-

ing the proper equilibration. This equivalence can be

used to build new trajectories by combining long steps of

different trajectories at equilibration points. Individual

ordered 1 Å long steps were randomly selected from the

15 trajectories until a new trajectory was built. By this

process (MSTC), an ensemble of 107 trajectories were

generated and used to construct the work probability dis-

tribution P(W) (see Fig. 2).

Although test runs indicated that peptides are

unfolded when stretching them by 15 Å (total N-terminal

to C-terminal distance of 30.5 Å), the number of long

steps needed to unfold the peptide could be smaller than

15. If this were the case, some regions of the peptide

could become overly stretched. To determine the mini-

mum number of long steps needed to unfold the helix,

the hydrogen-bonded donor–acceptor distances and the

internal energy of the peptide were analyzed. For all tra-

jectories of the alanine peptide, the distances between

backbone H-bond partners were calculated at every

frame of the simulation and the average value was com-

puted every 0.5 Å of extension. Figure 3 shows distances

from the donor (N) to the acceptor (O) of the backbone

between residues i, i 1 4 for a typical trajectory. Initially,

all backbone hydrogen bonds are formed. As one end is

pulled these distances increase and hydrogen bonds are

broken. After pulling 5 Å, averaging over all trajectories,

53% of all H-bond are still formed. At 10 Å, <10% of

the H-bonds are formed; therefore this distance was used

to calculate free energies. The results also show that

between 10 and 11 Å the peptide internal energy and the

peptide-solvent energy decrease significantly while the

total energy, as expected, remains constant (see Fig. 3).

These changes mean that at around 10 Å the unfolded

helix becomes the most stable species, further supporting

the choice of this extension for free-energy estimations.

The method outlined here (MSTC) was used to calcu-

late the free energy change of unfolding by force of dif-

ferent 12-residue helices. Calculations were done for an

all-alanine helix Ala12, and for host-guest systems

Ala10X2, in which the alanine-based helix is the host and

two positions are substituted with another amino acid

residue. Substitutions were made at the fourth and ninth

positions to avoid side-chain side-chain interactions.

Substitutions to 17 of the other 19 naturally occurring

amino acids (proline and glycine were not modeled)

were made. For each peptide, 15 trajectories were simu-

lated and used to calculate P(W) and DG of the transi-

tion. The values obtained for the different peptides can

be used to calculate DDG ¼ DGAla10X2
� DGAla12

, a mea-

sure of the helix stabilization propensity of each amino

acid vis-a-vis alanine.

The importance of sampling and of the
number of trajectories needed

Jarzynski’s equality is valid when averaging is carried

out over a large number of repetitions of a process that

takes the system from a certain equilibrium state A to

another equilibrium state B. However, many problems

arise when attempting to sample enough trials to provide

Figure 1
Unfolding the a-helix by pulling. (A) The Ca of the C-terminus is

fixed while the Ca of the N-terminus is harmonically constrained while

being pulled in sequential steps. (B) The peptide is unfolded by

stretching it in steps of 1 Å, divided in 20 small steps of 0.05 Å each.

After each extension of 1 Å the system is allowed to equilibrate for
1 ns.
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a representative work distribution. Of special interest is

the ability to sample the low end (or tail) of the work

distribution.29–31 We know that hWi � DG, which is

equivalent to saying that in each trajectory the difference

W 2 DG corresponds to the dissipated work Wdiss.29,32

In a series of nonequilibrium experiments, the work is

different from one irreversible trajectory to another. If we

assume that the system is initially in an equilibrium state,

the relation hWi � DG holds on average, but work of

multiple trajectories will have a certain distribution. In a

generic distribution, for any given trajectory it is possible

that Wdiss < 0. Trajectories in this class are usually called

‘‘violating trajectories’’ or ‘‘transient violations of the sec-

ond law.’’20 In these situations, the work done on the

system can be very small or work can even be done by

the system. To recover DG, Jarzynski’s equality enhances,

through the exponential averaging, the weight of this low

energy tail of the distribution.

The ability to sample all values of the work is of fun-

damental importance when building P(W). If we think in

terms of typical realizations as those in which the work is

near the average value, and dominant realizations as

those that will be heavily weighted in the exponential

averaging <e2bW>, it is necessary to ensure that enough

dominant realizations are sampled.29,33 In the context

of the method presented in this work, two variables

should be taken into account: (1) the number of original

trajectories used for the combination process and (2) the

number of combinations needed for convergence. We

found that for this system 15 computed trajectories com-

bined to give 107 total work values converge to a work

distribution that does not change by adding more trajec-

tories (see Fig. 4).

Once P(W) is generated, work values are averaged

using Jarzynski’s equality. For this, direct averaging is

used considering the 107 work values calculated. A simi-

lar method is to consider the distribution itself, that is,

he�bW i ¼
R
PðW Þe�bWdW . Results of the two evalua-

tions are comparable. After averaging, the free energy is

obtained as DG ¼ �b�1Lnðhe�bW iÞ.

Figure 2
(A) Force values for different trajectories during the pulling process. (B) Work values calculated at every small step for different trajectories. (C)

Path selection scheme. Every equilibrated state is shown in orange. We start with 15 trajectories each composed of 15 long steps. (D) Probability
work distribution P(W) built using the MSTC method up to 107 trajectories.
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The free energy of extending the helix can also be cal-

culated using the expression DG ¼ b�1
Pm

is¼1 Ln 1
nPn

it
e�bWit ;is (for derivation see Appendix), where m 5 10

and n 5 15. Values calculated this way are equivalent to

those calculated for all possible nm trajectories. As described

above, we proved empirically that to obtain values of

Figure 3
Top: distance between backbone donor and acceptor for all pairs that form hydrogen bond in the helical state. As one end is pulled hydrogen

bonds are broken until the unfold state is reached. Bottom: energy normalized to the average energy for the pulling process. Protein–protein energy,

protein–solvent interaction, and total energy are shown.

Figure 4
Left: work distribution functions for the forward (orange, unfolding) and reverse (red, folding) simulations of the Ala12 peptide. The value of DG,

corresponding to the intersection between the two distributions is 3.6 kcal/mol. Right: DG calculated using different number of final trajectories

after combination. A total of 107 new trajectories assures a converged value.

I. Echeverria and L.M. Amzel
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similar quality it would be necessary to compute at least

107 full trajectories.

Free energy estimations using Jarzynski’s equality have

associated systematic errors. These systematic errors are

referred as the bias (difference between the Jarzynski esti-

mations of the free energy and the true value of the free

energy). Equations for estimating this bias have been pre-

sented by Gore et al.29 for cases in which perturbations of

the system are small, both for small and large number of

trajectories. The bias corrections considered are described

as a function of the estimated average dissipated work

Ŵ dis. As a first approximation they propose the use of

Ŵ dis 5 hW i � DGJ , where DGJ is the Jarzynski estimate

of DG. Then if the estimated bias is B̂, the free energy can

be corrected as DGB ¼ hDGiJ � B̂J . When perturbations

are near equilibrium, in the large N limit, the bias is

BðNÞ ¼ ðe2bW dis�1Þ=2bN . For small N this is no longer a

good estimation and the bias is underestimated. For the

calculations we presented for alanine peptides the average

dissipated work is Wdis � 1.8 kcal/mol, then the numera-

tor of the bias expression is �430, which is �N(107),

therefore we are in the large N regime. In this regime, the

bias in the estimation of DG is small (<0.002 kcal/mol).

Reverse simulations and the fluctuation
theorem

The Crooks fluctuation theorem (CFT) relates typical

and dominant realizations from forward (F) unfolding

and reverse (R) folding simulations16,34–36 using the

ratio PFðW Þ=PRð�W Þ ¼ ebðW�DGÞ. It is clear that the

work value at which the two work distributions intersect

corresponds to the value of the thermodynamic DG. We

used CFT to test the validity of our work distributions.

For this, reverse simulations were performed in the same

stepwise fashion used for the forward realizations.

Reverse simulations started at the final structures

obtained during every long step from the forward realiza-

tion. Fifteen trajectories were produced for the folding

reaction. Equilibration times for forward and reverse

simulations were equivalent.

With both sets of simulations it is possible to estimate

the size of the ensemble needed to obtain a dominant

realization. The number of trajectories needed for conver-

gence of the free energy values have been estimated by

Jarzynski33 by considering the different probabilities of

typical and dominant realizations. For the forward

experiment the number of realizations needed is

NF � e�bhWd
R i; analogously for the reverse experiment

NR � ebhW
d
F i.33 The subscripts F and R stand for forward

and reverse and d indicates dissipated work. Using the

average values of Wd, we estimated that the number of

realizations for the forward process was �105, while for

reverse simulations was �107. Both distributions are

shown in Figure 4. In this example, the free energy of the

unfolding process using the CFT is 3.6 kcal/mol. If the

free energy is calculated using only the forward realiza-

tions and Jarzynski’s equality, a value of 5.0 kcal/mol is

obtained. The similarity of these values suggests that the

overall sampling of the distribution gives enough infor-

mation about the dominant realizations.

RESULTS AND DISCUSSION

Free energy differences calculated with the simulations

presented here were compared with experimental results

of helix propensities obtained by Baldwin and

coworkers37 who also used alanine-based peptides

containing guest amino acids with no side-chain side-

chain interactions. The results are presented as difference

in the free energies of helix formation and per residue

(–DDGextension/2 given the two mutations per peptide).

Values from the simulations show strong correlation with

experimental values (Table I and Fig. 5) with scale slope

(regression coefficient) of 1.1 and R2 of 0.86. This high

correlation shows that the method presented here allows

the use of Jarzynski’s equality for estimating differences

in the free energy of unfolding in realistic computational

times.

Entropic considerations

To make a direct comparison between the experimental

results of Baldwin and coworkers37 and the computed

Table I
Free Energy Differences with Respect to Alanine Peptide

DDGexp DGsim DDGsim DGsim,ent DDGsim,ent

ALA 0.00 25.002 0.000 25.553 0.000
ARG 0.21 24.024 0.489 24.925 0.628
ASN 0.88 22.920 1.041 24.372 1.181
ASP 0.88 23.515 0.743 24.670 0.883
CYS 0.82 22.788 1.107 24.307 1.246
GLN 0.57 24.307 0.348 25.066 0.487
GLU 0.68 23.947 0.527 24.886 0.667
HIS 0.78 24.003 0.499 24.914 0.639
ILE 0.70 24.118 0.442 24.729 0.824
LEU 0.28 24.670 0.166 25.247 0.305
LYS 0.36 24.239 0.381 25.032 0.521
MET 0.51 23.864 0.569 24.844 0.708
PHE 0.93 22.742 1.130 24.283 1.270
SER 0.78 23.827 0.587 24.826 0.727
THR 1.32 21.776 1.613 23.801 1.752
TRP 0.78 21.400 1.801 23.370 2.183
TYR 0.60 24.577 0.212 25.201 0.352
VAL 1.05 22.214 1.394 23.777 1.776

Residue name corresponds to the guest residue in every chain. DDGexp: free energy

difference reproduced from Chakrabartty et al.37 for experimental measurements of

helix propensities with respect to alanine. DGsim: free energy calculated by simula-

tions when the N-terminus of the peptide has been pulled 10 Å and both ends

remained fixed during every equilibration. DDGsim: free energy difference respect to

alanine per residue. DGsim,ent: free energy obtained by simulation and corrected

assuming a lost of entropy. Corrections were done assuming that from the 12 resi-

dues four are able to sample conformational space. DDGsim,ent: free energy differ-

ence with respect to alanine after entropic corrections.
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values reported here, contributions of the entropy also

need to be considered. In the experiments of Baldwin

and coworkers,37 the final states are unfolded peptides,

while for the MD simulations presented here in the final

state, the two ends of the peptides are positionally con-

strained. Initially, dihedral angles are in the helical region

of the Ramachandran plot and backbone hydrogen bonds

are intact. As the end-to-end distance is increased, hydro-

gen bonds are broken and dihedral angles can sample

other regions of configuration space. In the extreme case

of an end-to-end distance equivalent to that of the fully

extended peptide length, dihedral angles are again fixed.

For intermediate states, where all hydrogen bonds are

broken but the peptide is still not fully extended (such as

after a 10 Å extension), there are still constraints on

some dihedral angles. For each peptide, only a small

number of individual residues can adopt nonextended

angles, while others are constrained to a certain subset of

extended configurations.

Conformational entropy contributions to unfolding

have been calculated in the past using structural parame-

terizations,2,38 molecular mechanics dynamics,39–41 and

Monte Carlo simulations.42,43 In the calculations per-

formed here, even in the initial helical state the side

chains are exposed, so for each amino acid only two con-

tributions to conformational entropy need to be consid-

ered: (1) DSex?u,sc, the entropy gained by side chain

atoms when the backbone unfolds, and (2) DSbb, the en-

tropy gained by the backbone when it unfolds. The first

contribution is highly similar, if not identical, between

the experiments and the simulations, and no correction

is necessary.

For the backbone entropy the results of the MD simu-

lations include the contribution of going from a helix to

a conformation with most of the H-bonds broken but

with the ends fixed. To compare the MD results with the

experimental results of Baldwin and coworkers,37 it is

necessary to estimate the change in entropy of taking the

final state of the MD simulations partially unfolded with

the ends fixed to a fully unfolded state. One way to ac-

complish this correction is to subtract from the estimated

DG, the contribution of the term DShelix->extended and to

add back DShelix->unfolded.

Every peptide is formed by 10 hosts alanine and two

guest residues. If j (with j � 12) is the number of resi-

dues within the extended peptide with the ends fixed

that can sample multiple conformations, the backbone

conformational entropy is given by:

DShelix!extended ¼ j � 10

12
DSAla þ

2

12
DSres

� �
þ R ln

12

j

� �
:

For DSAla and DSres, we used the exposed to unfolded

entropies from D’Aquino et al.41 (Table I). Note that the

fully unfolded state corresponds to j 5 12 (i.e., no resi-

due is constrained by the fixed points), and therefore the

sought after value of the entropy difference is given by:

DSextended!unfolded ¼ ð12 � jÞ 10

12
DSAla þ

2

12
DSres

� �

� R ln
12

j

� �
:

To further investigate how well configurational space is

sampled during the extension process and determine the

value of j, the correlation among consecutive dihedral

angles was calculated. For every 1 Å step, dihedral angles

/ and u were calculated and the correlation between sam-

ples of 15 consecutive small steps computed. To avoid

unwanted sampling effects, the sample size was chosen so

that frames used in the estimation of the correlation did

not include the ends of the long steps. High correlation

between two frames can be interpreted as both frames hav-

ing the same conformation in terms of dihedral angles,

while low correlation indicates a change in conformation.

A correlation threshold of 0.2 was used as an indication of

a conformational change between frames. On average, a

correlation lower than 0.2 corresponds to a standard devi-

ation in 108 for / or u. When considering these values

and looking over all trajectories, on average four amino

acids per peptide are free to sample all angles when the he-

lix has been pulled 10 Å. Thus, j 5 4, was used to calculate

the entropy of the backbone when the peptide is unfolded

with the ends fixed 10 Å apart, and j 5 12 was used to

describe the completely unfolded peptide with free ends.

In both cases all side chains are free to sample conforma-

tional space (Table I). These values, which correspond to

the difference in entropy between the final state in the

simulation and the final state in the solution experiments,

were used to correct the computed free energies (Table II).

Backbone entropy corrections are similar for all peptides

independent of the host, with slightly lower values for

b-branched residues (Ile, Thr, and Val). Also, helix pro-

Figure 5
Correlation of helix stabilization propensity between experimental

values reported by Baldwin and coworkers37 and values calculated by
simulations after entropic corrections.
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pensities (DDG) after this correction show the same high

correlation with the experimental results observed for the

not corrected values, with a scale slope (regression coeffi-

cient) of 1.33 and R2 5 0.88. Therefore, although the en-

tropy corrections are important for DG estimations, they

show no significant effect on free energy differences

(DDG).

Free energies of helix unfolding were also computed by

Park et al.23 In this study, Jarzynski’s equality was used

to calculate a potential of mean force, but because these

calculations were done in vacuum, comparison with ex-

perimental data was not possible. In the absence of sol-

vent, the mechanism by which stabilizing hydrogen

bonds are broken is purely mechanical, while in aqueous

solvent peptide hydrogen bonds are bridged by water

molecules as an intermediate state to bond breaking.44

As a consequence Park estimates give a large overestima-

tion of free energy values compared to the results pre-

sented in the present work.

SUMMARY AND CONCLUSIONS

We have presented estimations of helix propensities

computed using MD simulations. In particular, we calcu-

lated differences in free energies of unfolding for alanine-

based host-guest peptides. These differences correlate

very well with the helix stabilization propensities

obtained experimentally.

These calculations were performed with a robust

method (MSTC) that allows calculation of free energy

differences using Jarzynski’s equality. The method pre-

sented here is sensitive enough to estimate free energy

differences that are highly correlated with experimental

data. Additionally, a simple calculation is presented to

correct for entropic effects that arise because the ends of

the peptide are fixed in the end state of the calculations.

The method can be widely applied to different systems

and can be used to estimate free energy differences even

if the number of atoms is different between the processes.

The main strength of the method is that the system may

be driven out of equilibrium during the process as long

as it is equilibrated at the end of each step. By dividing

the transition into steps between equilibrated states,

microstates at the end of each step are members of the

same ensemble given that they are equilibrated with iden-

tical external conditions (i.e., energy, spring constant,

and position of the fixed point). A combinatorial process

is used to generate a representative work distribution

from a small number of computed trajectories. This

combination of processes between equivalent microstates

gives rise to a work distribution for the transition, which

is used to estimate the free energy. To estimate how irre-

versible the process was and to test the effectiveness of

the sampling used, a simulation of the reversed process

was also performed. The values of DG obtained using

Jarzynski’s equality and CFT were highly similar, suggest-

ing that the method presented here provides a realistic

work distribution.

It should be noted that the method is general enough

to be applied to other processes such as estimation of

differences in binding affinity between different ligands

binding to the same protein, binding of a ligand to wild

type and mutant proteins, unfolding of RNAs with indi-

vidual substitutions, unfolding of proteins with a small

number of mutations, and other similar processes.
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APPENDIX

The work performed during one simulation trajectory

can be written as Wt ¼
Pm

is¼1 Wis , where Wis
is the work

done in the is step. Then, the work done during one long

step in a set of simulations is given by Wis,it
being is the

segment index and it the trajectory index. Using this no-

menclature, Jarzynski’s equality can be rewritten sum-

ming over trajectories for same steps. This is,

e�bDG ¼ e�bW
� �

¼ 1

n

Xn
it¼1

e�bWit ;1

 !
1

n

Xn
it¼1

e�bWit ;2

 !
� � � 1

n

Xn
it¼1

e�bWit ;m

 !

¼ 1

nm

Ym
is

Xn
it¼1

e�bWit ;ts

where steps are considered independent. Then, the free

energy of the transition in terms of steps is given by:

DG ¼ �b�1
Xm
is¼1

ln
1

n

Xn
it

e�bWit ;is

Where we used the fact that the logarithm of a product

is the sum of the logarithms.
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