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ABSTRACT

Jarzynski’s equality (Jarzynski, Phys Rev E
1997; 56:5018 and Jarzynski, Phys Rev Lett
1997; 78:2690) relates equilibrium free
energy differences between two states A and
B to the work done when the system is
driven repeatedly and irreversibly from an
equilibrium state A to equilibrium state B.
We present calculations of helix propen-
sities using a novel procedure based on this
equality. In particular, a work probability
distribution is built based on combinations
of multi-step trajectories that give represen-
tative work distributions without requiring
computing an unreasonable large number
of trajectories between states. A small num-
ber of trajectories (15) are used to construct
a distribution that contains millions of
work values. This distribution is used to
calculate AG,p using Jarsynski’s equation.
To apply and test this method, we used as a
model system a dodeca-alanine helix, ana-
lyzing its extension using mechanical force.
This helix was used as the basis of a host
guest system in which two of the 12 resi-
dues are substituted by some other amino
acid (as the guests). The differences
between the unfolding free energies of the
substituted peptides and the all-alanine
peptide provided values for AAG that can
be interpreted as the helix propensities of
each amino acid. Results show good correla-
tion with the experimental measurements
of Baldwin and coworkers (Chakrabartty
et al., Protein Sci 1994; 3:843-852).
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INTRODUCTION

The a-helix is one of the principal motifs in native proteins. Its highly
geometric structure and fast folding makes it an excellent model system
to study folding energetics. Although a-helices are stabilized by i to i +
4 backbone hydrogen bonds, different amino acids have different effects
on the helix stability. This difference in stability is referred to as the helix
propensity of the amino acid. From an entropic point of view, helix for-
mation restricts the configurational freedom of both the backbone and
the side chain rotations. Alanine, with its small side chain, is a strong
helix former, leucine and arginine are helix-indifferent, and all other
amino acids have a destabilizing effect. Hence, it has been proposed that
the loss of configurational entropy accounts for the thermodynamic cost
responsible for observed helix-formation propensities.l’2 Thermodynamic
helix-formation propensities have been studied experimentally and meas-
ured as differences in the Gibbs free energy of unfolding using host-guest
schemes. In these systems an alanine-based peptide is used as the “host”
and point substitutions with another amino acid residue X are intro-
duced as “guests”.

To calculate helix-formation propensities using computational methods
we studied the process of extending a 12-residue «-helix using a
mechanical force. The AG for the process was estimated for a reference
12-alanine peptide (Ala;;) and for peptides in which two of the 12 resi-
dues were substituted by the same nonalanine amino acid X referred to
as the guest. We refer to this system as the Ala;(X, host-guest peptide
(sequence AlasXAla,XAla;). Additionally, the difference between the free
energies of extending the Ala;(X, and Ala;, helices, AAG, was calculated.
The value of AAG, expressed on a per guest residue basis (AAG/2), can
be interpreted as a measurement of the helix stabilization propensity of
each amino acid type.

The calculation of free energy differences AG, plays a fundamental role
in the study of molecular processes such as protein folding, ligand
binding and solubility. Several computational methods, including free
energy calculations,>=> thermodynamic integrations,®~10 and free energy

Abbreviations: CFT, Crooks fluctuation theorem; MD, molecular dynamics; MSTC, multi-step trajectory
combination.
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Helix Propensities Calculations for Amino Acids

perturbation! 1713 have been used before to estimate free
energy differences between equilibrium states. However,
they require that all steps of the transition be carried out
at or close to equilibrium, making the calculations diffi-
cult to perform. Furthermore, calculations using these
methods suggest that comparisons between states or
processes with different numbers of atoms are intrinsi-
cally inaccurate. Comparing the unfolding of an Ala;,
helix with that of helices of other sequences falls into this
category.

It has been shown that for atomic systems that
involve large fluctuations the work necessary to move
the system between two equilibrium states A and B will
vary from one repetition to another. As a consequence
of the second law of thermodynamics, the average work
of a large number of repetitions carried out irreversibly
is greater than the thermodynamic change in free
energy between states A and B ((W) > AG, where (...)
denotes average). Recently, Jarzynski has shown that for
a system driven between two equilibrium states A and
B by doing work.

<675w> — ¢ BAG

(where B = VkT)1615 even if during the process the
system is far from equilibrium. This remarkable equa-
tion provides the basis for estimating free energy differ-
ences from data obtained for an irreversible process,
provided that enough repetitions are carried out. Since
1997, when Jarzynski first presented this result, it has been
rederived in many frameworks!6=18 and tested experi-
mentally.19-21 In the first reported experimental work,
Liphardt et al.!9 performed single molecule experiments
to mechanically unfold a single RNA molecule. Application
of Jarzynski’s equality allowed them to recover AG from a
set of irreversible trajectories.

This equation also leads to new approaches for esti-
mating free energies using molecular dynamics (MD)
simulations to construct the work distribution P(W).
MD simulations have already been used to test this rela-
tion for simple s.ystems,22 as well as for some more com-
plex systems.23-20 However, for a system driven irrever-
sibly between two equilibrium states A and B by a force,
the computational time needed to access a representative
work distribution may be prohibitively high, especially if
the two states are well-separated energetically.

In the present work, helix-formation propensities for
different amino acids were calculated using a novel pro-
cedure based on Jarzynski’s equality: Multi-step trajectory
combination (MSTC). In this method, path ensembles
are constructed and used to obtain representative work
distributions for process in which the system is driven
out of equilibrium, without requiring an unreasonably
large number of trajectory simulations. The general
scheme consists of dividing the trajectory between the
initial and final states into m steps, equilibrating the

system at the end of each step. After generating n trajec-
tories, new paths are generated by combining steps of
different trajectories, taking advantage of the fact that,
because of equilibration, different trajectories at the end
of each step share microstates. In this procedure, if we
generate n trajectories of m steps each, they can be com-
bined to produce n™ trajectories. This means that if one
computes, for example, 15 full trajectories, each divided
into 10 steps, equilibrating at the end of each step, one
can obtain a distribution of work values corresponding
to 15" (~6 X 10") full trajectories. Even if equilibration
after each step increases the computational time by a fac-
tor of 10, the gain in computational efficiency will still
be close to a factor of 10°. Computation of AG over the
n™ trajectories is equivalent to using Jarzynski’s equation
to compute AG,,, the value of the free energy of each of
the m steps averaged over the n trajectories, and adding
them to obtain the total AG value (see appendix).

METHODOLOGY
Unfolding helices by force

All simulations were performed using the program
CHARMM.27 The complete system used was a 12-alanine
helix solvated in a box of TIP3 water molecules of dimen-
sions 49.67 X 27.94 X 27.94 A (~1250 TIP3 molecules).
The total number of atoms in the system, including hydro-
gens, was 3856; periodic boundary conditions were used
in all calculations. Simulations were performed in a con-
stant number of atoms, volume and energy (NVE) ensem-
ble. The initial system was pre-equilibrated at a tempera-
ture of 300 K.

Extension of the helices was carried out by applying a
force along the line connecting the Ca of the C-terminus
and the Ca of the (acetylated) N-terminus. The C-termi-
nal Coa was fixed and the N-terminal Co was attached to
a moving target point through a soft harmonic constraint
with k = 5 kcal/(mol Az). To stretch the helix, the target
point was pulled in steps of 0.05 A. After each step, the
system was allowed to equilibrate for 100 ps. Hereafter,
these are referred to as small steps. When 20 small steps
were completed, equivalent to a 1 A extension, the Sys-
tem was equilibrated for a longer time (1 ns). This will
be referred to as a long step (Figure 1). The time neces-
sary to reach equilibrium at the end of the long steps
was determined empirically. Different times were tested
monitoring the temperature and the energy until these
values became stable and no structural stress was present
in the structure. The equilibration time was then set to
twice the time necessary for stability. During these equili-
brations, the average properties of the system (macro-
state) fluctuate about the same values in the different tra-
jectories. Thus, even if the time is not long enough for
the peptides to sample some of the same conformations
in all trajectories, the states accessed in the different tra-
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Figure 1

Unfolding the a-helix by pulling. (A) The Ca of the C-terminus is
fixed while the Ca of the N-terminus is harmonically constrained while
being pulled in sequential steps. (B) The peptide is unfolded by
stretching it in steps of 1 A, divided in 20 small steps of 0.05 A each.
After each extension of 1 A the system is allowed to equilibrate for

1 ns.

jectories do belong to the same ensemble (macrostate).
The total number of long steps performed (15 steps) is
equivalent to stretching the molecule 15 A. Each 15 A
extension constitutes a trajectory. (Subdivision of trajec-
tories has been used before for sampling rare events in
the context of boundary value formation for barrier tran-
sitions,28 but this study is not relevant to the method
presented here.)

For each trajectory the force exerted over the system
was calculated as F = —k(rca — ), where rcp is the
position (x, y z) of the Ca of the N-terminus at each
step and 1, corresponds to the position of the target
point where the harmonic constraint is set. The variable
I'er iNCreases by 0.05 A in each small step corresponding
to a stretching velocity of 0.05 A/ps. The work done
on the system for each long step is given by

= [M" F - dxca, were F is the force projected onto
the pulhng axis (x-axis). Force and work behavior for
various trajectories are shown in Figure 2. The calculated
force shows the fluctuating nature of the system. Work
values show great variability from trajectory to trajectory.
Both positive and negative values of the work are
observed. The positive portions of the curves correspond
to events in which energy is input to the system to drive
the unfolding process. Negative work values result when
the helix is already unstable and pushes against the
“spring” to continue unfolding.

MD calculations were used to compute 15 work values
for each trajectory: one value for each of the 15 long
(1 A) steps. For each peptide, 15 trajectories were simu-
lated. Microstates at the end of each long step for differ-
ent trajectories belong to the same ensemble, after ensur-
ing the proper equilibration. This equivalence can be
used to build new trajectories by combining long steps of
different trajectories at equilibration points. Individual
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ordered 1 A long steps were randomly selected from the
15 trajectories until a new trajectory was built. By this
process (MSTC), an ensemble of 107 trajectories were
generated and used to construct the work probability dis-
tribution P(W) (see Fig. 2).

Although test runs indicated that peptides are
unfolded when stretching them by 15 A (total N-terminal
to C-terminal distance of 30.5 A), the number of long
steps needed to unfold the peptide could be smaller than
15. If this were the case, some regions of the peptide
could become overly stretched. To determine the mini-
mum number of long steps needed to unfold the helix,
the hydrogen-bonded donor—acceptor distances and the
internal energy of the peptide were analyzed. For all tra-
jectories of the alanine peptide, the distances between
backbone H-bond partners were calculated at every
frame of the simulation and the average value was com-
puted every 0.5 A of extension. Figure 3 shows distances
from the donor (N) to the acceptor (O) of the backbone
between residues i, i + 4 for a typical trajectory. Initially,
all backbone hydrogen bonds are formed. As one end is
pulled these distances increase and hydrogen bonds are
broken. After pulling 5 A, averaging over all trajectories,
53% of all H-bond are still formed. At 10 A, <10% of
the H-bonds are formed; therefore this distance was used
to calculate free energies. The results also show that
between 10 and 11 A the peptide internal energy and the
peptide-solvent energy decrease significantly while the
total energy, as expected, remains constant (see Fig. 3).
These changes mean that at around 10 A the unfolded
helix becomes the most stable species, further supporting
the choice of this extension for free-energy estimations.

The method outlined here (MSTC) was used to calcu-
late the free energy change of unfolding by force of dif-
ferent 12-residue helices. Calculations were done for an
all-alanine helix Ala;;, and for host-guest systems
Ala (X5, in which the alanine-based helix is the host and
two positions are substituted with another amino acid
residue. Substitutions were made at the fourth and ninth
positions to avoid side-chain side-chain interactions.
Substitutions to 17 of the other 19 naturally occurring
amino acids (proline and glycine were not modeled)
were made. For each peptide, 15 trajectories were simu-
lated and used to calculate P(W) and AG of the transi-
tion. The values obtained for the different peptides can
be used to calculate AAG = AGpya,x, — AGal,,>» @ mea-
sure of the helix stabilization propensity of each amino
acid vis-a-vis alanine.

The importance of sampling and of the
number of trajectories needed

Jarzynski’s equality is valid when averaging is carried
out over a large number of repetitions of a process that
takes the system from a certain equilibrium state A to
another equilibrium state B. However, many problems
arise when attempting to sample enough trials to provide
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Figure 2

(A) Force values for different trajectories during the pulling process. (B) Work values calculated at every small step for different trajectories. (C)
Path selection scheme. Every equilibrated state is shown in orange. We start with 15 trajectories each composed of 15 long steps. (D) Probability
work distribution P(W) built using the MSTC method up to 10” trajectories.

a representative work distribution. Of special interest is
the ability to sample the low end (or tail) of the work
distribution.29-31 We know that (W) > AG, which is
equivalent to saying that in each trajectory the difference
W — AG corresponds to the dissipated work Wiiee: 29032
In a series of nonequilibrium experiments, the work is
different from one irreversible trajectory to another. If we
assume that the system is initially in an equilibrium state,
the relation (W) > AG holds on average, but work of
multiple trajectories will have a certain distribution. In a
generic distribution, for any given trajectory it is possible
that Wy < 0. Trajectories in this class are usually called
“violating trajectories” or “transient violations of the sec-
ond law.’20 In these situations, the work done on the
system can be very small or work can even be done by
the system. To recover AG, Jarzynski’s equality enhances,
through the exponential averaging, the weight of this low
energy tail of the distribution.

The ability to sample all values of the work is of fun-
damental importance when building P(W). If we think in

terms of typical realizations as those in which the work is
near the average value, and dominant realizations as
those that will be heavily weighted in the exponential
averaging <e P">, it is necessary to ensure that enough
dominant realizations are sampled.2%>33 In the context
of the method presented in this work, two variables
should be taken into account: (1) the number of original
trajectories used for the combination process and (2) the
number of combinations needed for convergence. We
found that for this system 15 computed trajectories com-
bined to give 10” total work values converge to a work
distribution that does not change by adding more trajec-
tories (see Fig. 4).

Once P(W) is generated, work values are averaged
using Jarzynski’s equality. For this, direct averaging is
used considering the 10" work values calculated. A simi-
lar method is to consider the distribution itself, that is,

“BWY = [P(W)e P"dW. Results of the two evalua-
tions are comparable. After averaging, the free energy is
obtained as AG = —B'Ln({e P")).
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Figure 3

Top: distance between backbone donor and acceptor for all pairs that form hydrogen bond in the helical state. As one end is pulled hydrogen
bonds are broken until the unfold state is reached. Bottom: energy normalized to the average energy for the pulling process. Protein—protein energy,
protein—solvent interaction, and total energy are shown.

The free energy of extending the helix can also be cal- and n = 15. Values calculated this way are equivalent to
culated using the expression AG ="' it Lnt  those calculated for all possible n™ trajectories. As described

ZZ e PWiis (for derivation see Appendix), where m = 10 above, we proved empirically that to obtain values of

-5.00
]
1

le]

= Unfolding
- Folding

e

-5.02

3.6 (kcal/mol)

P(W)
AG (kcal/mol)
-5.04
1

5.06

-5.08

0.00 005 010 045 020 025 030 035

I I T I 1 I T T
0 5 10 3 4 5 6 7

Work (kcal/mol) log1o (number of combined trajectories)

]
Figure 4

Left: work distribution functions for the forward (orange, unfolding) and reverse (red, folding) simulations of the Ala;, peptide. The value of AG,
corresponding to the intersection between the two distributions is 3.6 kcal/mol. Right: AG calculated using different number of final trajectories
after combination. A total of 107 new trajectories assures a converged value.
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similar quality it would be necessary to compute at least

107 full trajectories.

Free energy estimations using Jarzynski’s equality have
associated systematic errors. These systematic errors are
referred as the bias (difference between the Jarzynski esti-
mations of the free energy and the true value of the free
energy). Equations for estimating this bias have been pre-
sented by Gore et al.2% for cases in which perturbations of
the system are small, both for small and large number of
trajectories. The bias corrections considered are described
as a function of the estimated average dissipated work
Wais- As a first approximation they propose the use of
Wais = (W) — AG), where AG; is the Jarzynski estimate
of AG. Then if the estimated bias is B, the free energy can
be corrected as AGp = (AG); — B;. When perturbations
are near equilibrium, in the large N limit, the bias is
B(N) = (&**Was—1) /2B N. For small N this is no longer a
good estimation and the bias is underestimated. For the
calculations we presented for alanine peptides the average
dissipated work is Wisis ~ 1.8 kcal/mol, then the numera-
tor of the bias expression is ~430, which is < N(107),
therefore we are in the large N regime. In this regime, the
bias in the estimation of AG is small (<0.002 kcal/mol).

Reverse simulations and the fluctuation
theorem

The Crooks fluctuation theorem (CFT) relates typical
and dominant realizations from forward (F) unfolding
and reverse (R) folding simulations!®34-36 ysing the
ratio Pp(W)/Pr(—W) = eF(W=AG) It is clear that the
work value at which the two work distributions intersect
corresponds to the value of the thermodynamic AG. We
used CFT to test the validity of our work distributions.
For this, reverse simulations were performed in the same
stepwise fashion used for the forward realizations.
Reverse simulations started at the final structures
obtained during every long step from the forward realiza-
tion. Fifteen trajectories were produced for the folding
reaction. Equilibration times for forward and reverse
simulations were equivalent.

With both sets of simulations it is possible to estimate
the size of the ensemble needed to obtain a dominant
realization. The number of trajectories needed for conver-
gence of the free energy values have been estimated by
Jarzynski33 by considering the different probabilities of
typical and dominant realizations. For the forward
experiment the number of realizations needed is
Np ~ e Wi, analogously for the reverse experiment
Ny ~ eB(Wi) 33 The subscripts F and R stand for forward
and reverse and d indicates dissipated work. Using the
average values of W, we estimated that the number of
realizations for the forward process was ~10°, while for
reverse simulations was ~10’. Both distributions are
shown in Figure 4. In this example, the free energy of the
unfolding process using the CFT is 3.6 kcal/mol. If the

Table |
Free Energy Differences with Respect to Alanine Peptide
AAGexp AGsim AAGsim AGsim,ent AAGsim,ent

ALA 0.00 —5.002 0.000 —5.553 0.000
ARG 0.21 —4.024 0.489 —4.925 0.628
ASN 0.88 —2.920 1.041 —4.372 1.181
ASP 0.88 —3.515 0.743 —4.670 0.883
CYS 0.82 —2.788 1.107 —4.307 1.246
GLN 0.57 —4.307 0.348 —5.066 0.487
GLU 0.68 —3.947 0.527 —4.886 0.667
HIS 0.78 —4.003 0.499 —4.914 0.639
ILE 0.70 —4.118 0.442 —4.729 0.824
LEU 0.28 —4.670 0.166 —5.247 0.305
LYS 0.36 —4.239 0.381 —5.032 0.521
MET 0.51 —3.864 0.569 —4.844 0.708
PHE 0.93 —2.742 1.130 —4.283 1.270
SER 0.78 —3.827 0.587 —4.826 0.727
THR 1.32 —1.776 1.613 —3.801 1.752
TRP 0.78 —1.400 1.801 —3.370 2.183
TYR 0.60 —4.577 0.212 —5.201 0.352
VAL 1.05 —2.214 1.394 —=3.771 1.776

Residue name corresponds to the guest residue in every chain. AAG,y,: free energy
difference reproduced from Chakrabartty et al.”’ for experimental measurements of
helix propensities with respect to alanine. AGy,: free energy calculated by simula-
tions when the N-terminus of the peptide has been pulled 10 A and both ends
remained fixed during every equilibration. AAGy,: free energy difference respect to
alanine per residue. AGgmene free energy obtained by simulation and corrected
assuming a lost of entropy. Corrections were done assuming that from the 12 resi-
dues four are able to sample conformational space. AAGgmene: free energy differ-
ence with respect to alanine after entropic corrections.

free energy is calculated using only the forward realiza-
tions and Jarzynski’s equality, a value of 5.0 kcal/mol is
obtained. The similarity of these values suggests that the
overall sampling of the distribution gives enough infor-
mation about the dominant realizations.

RESULTS AND DISCUSSION

Free energy differences calculated with the simulations
presented here were compared with experimental results
of helix propensities obtained by Baldwin and
coworkers3” who also used alanine-based peptides
containing guest amino acids with no side-chain side-
chain interactions. The results are presented as difference
in the free energies of helix formation and per residue
(—AA Gegtension/2 given the two mutations per peptide).
Values from the simulations show strong correlation with
experimental values (Table I and Fig. 5) with scale slope
(regression coefficient) of 1.1 and R* of 0.86. This high
correlation shows that the method presented here allows
the use of Jarzynski’s equality for estimating differences
in the free energy of unfolding in realistic computational
times.

Entropic considerations

To make a direct comparison between the experimental
results of Baldwin and coworkers3” and the computed
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Correlation of helix stabilization propensitg between experimental
values reported by Baldwin and coworkers 7 and values calculated by
simulations after entropic corrections.

values reported here, contributions of the entropy also
need to be considered. In the experiments of Baldwin
and coworkers,37 the final states are unfolded peptides,
while for the MD simulations presented here in the final
state, the two ends of the peptides are positionally con-
strained. Initially, dihedral angles are in the helical region
of the Ramachandran plot and backbone hydrogen bonds
are intact. As the end-to-end distance is increased, hydro-
gen bonds are broken and dihedral angles can sample
other regions of configuration space. In the extreme case
of an end-to-end distance equivalent to that of the fully
extended peptide length, dihedral angles are again fixed.
For intermediate states, where all hydrogen bonds are
broken but the peptide is still not fully extended (such as
after a 10 A extension), there are still constraints on
some dihedral angles. For each peptide, only a small
number of individual residues can adopt nonextended
angles, while others are constrained to a certain subset of
extended configurations.

Conformational entropy contributions to unfolding
have been calculated in the past using structural parame-
terizations,z)38 molecular mechanics dynamics,39411 and
Monte Carlo simulations.4243 In the calculations per-
formed here, even in the initial helical state the side
chains are exposed, so for each amino acid only two con-
tributions to conformational entropy need to be consid-
ered: (1) ASeusc, the entropy gained by side chain
atoms when the backbone unfolds, and (2) ASg,, the en-
tropy gained by the backbone when it unfolds. The first
contribution is highly similar, if not identical, between
the experiments and the simulations, and no correction
is necessary.

For the backbone entropy the results of the MD simu-
lations include the contribution of going from a helix to
a conformation with most of the H-bonds broken but
with the ends fixed. To compare the MD results with the
experimental results of Baldwin and coworkers,37 it is
necessary to estimate the change in entropy of taking the
final state of the MD simulations partially unfolded with
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the ends fixed to a fully unfolded state. One way to ac-
complish this correction is to subtract from the estimated
AG, the contribution of the term ASpix->extended and to
add back AShelix->unfolded'

Every peptide is formed by 10 hosts alanine and two
guest residues. If j (with j < 12) is the number of resi-
dues within the extended peptide with the ends fixed
that can sample multiple conformations, the backbone
conformational entropy is given by:

. (10 2 12
A~Sheli)(~>e)(tended =] (E ASAla + EASRS) + R ln( ] )

For ASap, and AS.., we used the exposed to unfolded
entropies from D’Aquino et al.4! (Table I). Note that the
fully unfolded state corresponds to j = 12 (i.e., no resi-
due is constrained by the fixed points), and therefore the
sought after value of the entropy difference is given by:

~ (10 2
AScxtended—unfolded = (12 - ]) <ﬁ ASp1, + ﬁ ASres)
12
- Rln( . )
]

To further investigate how well configurational space is
sampled during the extension process and determine the
value of j, the correlation among consecutive dihedral
angles was calculated. For every 1 A step, dihedral angles
¢ and ¢ were calculated and the correlation between sam-
ples of 15 consecutive small steps computed. To avoid
unwanted sampling effects, the sample size was chosen so
that frames used in the estimation of the correlation did
not include the ends of the long steps. High correlation
between two frames can be interpreted as both frames hav-
ing the same conformation in terms of dihedral angles,
while low correlation indicates a change in conformation.
A correlation threshold of 0.2 was used as an indication of
a conformational change between frames. On average, a
correlation lower than 0.2 corresponds to a standard devi-
ation in 10° for ¢ or ¢@. When considering these values
and looking over all trajectories, on average four amino
acids per peptide are free to sample all angles when the he-
lix has been pulled 10 A. Thus, j = 4, was used to calculate
the entropy of the backbone when the peptide is unfolded
with the ends fixed 10 A apart, and j = 12 was used to
describe the completely unfolded peptide with free ends.
In both cases all side chains are free to sample conforma-
tional space (Table I). These values, which correspond to
the difference in entropy between the final state in the
simulation and the final state in the solution experiments,
were used to correct the computed free energies (Table II).
Backbone entropy corrections are similar for all peptides
independent of the host, with slightly lower values for
B-branched residues (Ile, Thr, and Val). Also, helix pro-
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Table 1l

Conformational Entropies for Amino Acids

ASex~>u bb TASexauA
ALA 41 6.10
ARG 34 5.82
ASN 34 5.82
ASP 34 5.82
CYS 34 5.82
GLN 34 5.82
GLU 34 5.82
HIS 34 5.82
ILE 2.18 5.34
LEU 34 5.82
LYS 34 5.82
MET 34 5.82
PHE 34 5.82
SER 34 5.82
THR 34 5.82
TRP 2.18 5.34
TYR 34 5.82
VAL 2.18 5.34

ASyp, values were reproduced from D’Aquino et al. ! Values are per amino acids.
TASex—., corresponds to the calculated entropy difference for the 12 amino acid
peptides. Residue name corresponds to the guest when is assumed that four
residues are free to sample the nonextended conformational space, measured in
keal/mol.

pensities (AAG) after this correction show the same high
correlation with the experimental results observed for the
not corrected values, with a scale slope (regression coeffi-
cient) of 1.33 and R* = 0.88. Therefore, although the en-
tropy corrections are important for AG estimations, they
show no significant effect on free energy differences
(AAG).

Free energies of helix unfolding were also computed by
Park et al23 In this study, Jarzynski’s equality was used
to calculate a potential of mean force, but because these
calculations were done in vacuum, comparison with ex-
perimental data was not possible. In the absence of sol-
vent, the mechanism by which stabilizing hydrogen
bonds are broken is purely mechanical, while in aqueous
solvent peptide hydrogen bonds are bridged by water
molecules as an intermediate state to bond breaking.44
As a consequence Park estimates give a large overestima-
tion of free energy values compared to the results pre-
sented in the present work.

SUMMARY AND CONCLUSIONS

We have presented estimations of helix propensities
computed using MD simulations. In particular, we calcu-
lated differences in free energies of unfolding for alanine-
based host-guest peptides. These differences correlate
very well with the helix stabilization propensities
obtained experimentally.

These calculations were performed with a robust
method (MSTC) that allows calculation of free energy
differences using Jarzynski’s equality. The method pre-
sented here is sensitive enough to estimate free energy

differences that are highly correlated with experimental
data. Additionally, a simple calculation is presented to
correct for entropic effects that arise because the ends of
the peptide are fixed in the end state of the calculations.

The method can be widely applied to different systems
and can be used to estimate free energy differences even
if the number of atoms is different between the processes.
The main strength of the method is that the system may
be driven out of equilibrium during the process as long
as it is equilibrated at the end of each step. By dividing
the transition into steps between equilibrated states,
microstates at the end of each step are members of the
same ensemble given that they are equilibrated with iden-
tical external conditions (i.e., energy, spring constant,
and position of the fixed point). A combinatorial process
is used to generate a representative work distribution
from a small number of computed trajectories. This
combination of processes between equivalent microstates
gives rise to a work distribution for the transition, which
is used to estimate the free energy. To estimate how irre-
versible the process was and to test the effectiveness of
the sampling used, a simulation of the reversed process
was also performed. The values of AG obtained using
Jarzynski’s equality and CFT were highly similar, suggest-
ing that the method presented here provides a realistic
work distribution.

It should be noted that the method is general enough
to be applied to other processes such as estimation of
differences in binding affinity between different ligands
binding to the same protein, binding of a ligand to wild
type and mutant proteins, unfolding of RNAs with indi-
vidual substitutions, unfolding of proteins with a small
number of mutations, and other similar processes.
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APPENDIX

The work performed during one simulation trajectory
can be written as W; = >_" | W, where W, is the work
done in the i step. Then, the work done during one long
step in a set of simulations is given by W;; being i; the
segment index and i, the trajectory index. Using this no-
menclature, Jarzynski’s equality can be rewritten sum-
ming over trajectories for same steps. This is,

e BAG _ <e—[3w>

I pw) (IS ew,
i GO I PO DL

=1 i=1

1 m n 7BW
= WH > e P

is =1

1 n
=3 e B
n
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where steps are considered independent. Then, the free
energy of the transition in terms of steps is given by:

is=1

Where we used the fact that the logarithm of a product
is the sum of the logarithms.



