I have made some modification to the mutant script at the modeller wiki. The change may be seen as patch to the original file. I I whised to change residue 1M and 3P to 1T and E3 in 1B72 is this the way to go. Ca s.mutant be used to select two residues? Knut J --- mutant.py 2010-12-01 09:04:33.004206998 +0100 +++ mutant2.py 2010-12-01 13:09:02.334207000 +0100 @@ -65,7 +65,7 @@ spline_on_site=True) #first argument -modelname, respos, restyp, chain, = sys.argv[1:] +modelname, respos, restyp, chain, respos2, restyp2, chain2 = sys.argv[1:] log.verbose() @@ -98,6 +98,12 @@ #perform the mutate residue operation s.mutate(residue_type=restyp) + + +s1=selection(mdl1.chains[chain2].residues[respos2]) +s1.mutate(residue_type=restyp2) + + #get two copies of the sequence. A modeller trick to get things set up ali.append_model(mdl1, align_codes=modelname) @@ -145,26 +151,30 @@ #residue, in second pass, include nonbonded neighboring atoms) #set up the mutate residue selection segment s = selection(mdl1.chains[chain].residues[respos]) - +s1=selection(mdl1.chains[chain2].residues[respos2]) mdl1.restraints.unpick_all() mdl1.restraints.pick(s) s.energy() +s1.energy() s.randomize_xyz(deviation=4.0) +s1.randomize_xyz(deviation=4.0) mdl1.env.edat.nonbonded_sel_atoms=2 optimize(s, sched) +optimize(s1, sched) #feels environment (energy computed on pairs that have at least one member #in the selected) mdl1.env.edat.nonbonded_sel_atoms=1 optimize(s, sched) +optimize(s1, sched) s.energy() - +s1.energy() #give a proper name -mdl1.write(file=modelname+restyp+respos+'.pdb') +mdl1.write(file=modelname+restyp+respos+'_'+respos2+restyp2+'.pdb') #delete the temporary file os.remove(modelname+restyp+respos+'.tmp') |
''' Created on Dec 1, 2010 @author: knut ''' import sys import os from modeller import * from modeller.optimizers import molecular_dynamics, conjugate_gradients from modeller.automodel import autosched # # mutate_model.py # # Usage: python mutate_model.py modelname respos resname chain > logfile # # Example: python mutate_model.py 1t29 1699 LEU A > 1t29.log # # # Creates a single in silico point mutation to sidechain type and at residue position # input by the user, in the structure whose file is modelname.pdb # The conformation of the mutant sidechain is optimized by conjugate gradient and # refined using some MD. # # Note: if the model has no chain identifier, specify "" for the chain argument. # def optimize(atmsel, sched): #conjugate gradient for step in sched: step.optimize(atmsel, max_iterations=200, min_atom_shift=0.001) #md refine(atmsel) cg = conjugate_gradients() cg.optimize(atmsel, max_iterations=200, min_atom_shift=0.001) #molecular dynamics def refine(atmsel): # at T=1000, max_atom_shift for 4fs is cca 0.15 A. md = molecular_dynamics(cap_atom_shift=0.39, md_time_step=4.0, md_return='FINAL') init_vel = True for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)), (200, 600, (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))): for temp in temps: md.optimize(atmsel, init_velocities=init_vel, temperature=temp, max_iterations=its, equilibrate=equil) init_vel = False #use homologs and dihedral library for dihedral angle restraints def make_restraints(mdl1, aln): rsr = mdl1.restraints rsr.clear() s = selection(mdl1) for typ in ('stereo', 'phi-psi_binormal'): rsr.make(s, restraint_type=typ, aln=aln, spline_on_site=True) for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'): rsr.make(s, restraint_type=typ+'_dihedral', spline_range=4.0, spline_dx=0.3, spline_min_points = 5, aln=aln, spline_on_site=True) #first argument modelname, respos, restyp, chain, respos2, restyp2, chain2 = sys.argv[1:] log.verbose() # Set a different value for rand_seed to get a different final model env = environ(rand_seed=-49837) env.io.hetatm = True #soft sphere potential env.edat.dynamic_sphere=False #lennard-jones potential (more accurate) env.edat.dynamic_lennard=True env.edat.contact_shell = 4.0 env.edat.update_dynamic = 0.39 # Read customized topology file with phosphoserines (or standard one) env.libs.topology.read(file='$(LIB)/top_heav.lib') # Read customized CHARMM parameter library with phosphoserines (or standard one) env.libs.parameters.read(file='$(LIB)/par.lib') # Read the original PDB file and copy its sequence to the alignment array: mdl1 = model(env, file=modelname) ali = alignment(env) ali.append_model(mdl1, atom_files=modelname, align_codes=modelname) #set up the mutate residue selection segment s = selection(mdl1.chains[chain].residues[respos]) #perform the mutate residue operation s.mutate(residue_type=restyp) s1=selection(mdl1.chains[chain2].residues[respos2]) s1.mutate(residue_type=restyp2) #get two copies of the sequence. A modeller trick to get things set up ali.append_model(mdl1, align_codes=modelname) # Generate molecular topology for mutant mdl1.clear_topology() mdl1.generate_topology(ali[-1]) # Transfer all the coordinates you can from the template native structure # to the mutant (this works even if the order of atoms in the native PDB # file is not standard): #here we are generating the model by reading the template coordinates mdl1.transfer_xyz(ali) # Build the remaining unknown coordinates mdl1.build(initialize_xyz=False, build_method='INTERNAL_COORDINATES') #yes model2 is the same file as model1. It's a modeller trick. mdl2 = model(env, file=modelname) #required to do a transfer_res_numb #ali.append_model(mdl2, atom_files=modelname, align_codes=modelname) #transfers from "model 2" to "model 1" mdl1.res_num_from(mdl2,ali) #It is usually necessary to write the mutated sequence out and read it in #before proceeding, because not all sequence related information about MODEL #is changed by this command (e.g., internal coordinates, charges, and atom #types and radii are not updated). mdl1.write(file=modelname+restyp+respos+'.tmp') mdl1.read(file=modelname+restyp+respos+'.tmp') #set up restraints before computing energy #we do this a second time because the model has been written out and read in, #clearing the previously set restraints make_restraints(mdl1, ali) #a non-bonded pair has to have at least as many selected atoms mdl1.env.edat.nonbonded_sel_atoms=1 sched = autosched.loop.make_for_model(mdl1) #only optimize the selected residue (in first pass, just atoms in selected #residue, in second pass, include nonbonded neighboring atoms) #set up the mutate residue selection segment s = selection(mdl1.chains[chain].residues[respos]) s1=selection(mdl1.chains[chain2].residues[respos2]) mdl1.restraints.unpick_all() mdl1.restraints.pick(s) s.energy() s1.energy() s.randomize_xyz(deviation=4.0) s1.randomize_xyz(deviation=4.0) mdl1.env.edat.nonbonded_sel_atoms=2 optimize(s, sched) optimize(s1, sched) #feels environment (energy computed on pairs that have at least one member #in the selected) mdl1.env.edat.nonbonded_sel_atoms=1 optimize(s, sched) optimize(s1, sched) s.energy() s1.energy() #give a proper name mdl1.write(file=modelname+restyp+respos+'_'+respos2+restyp2+'.pdb') #delete the temporary file os.remove(modelname+restyp+respos+'.tmp')
--- mutant.py 2010-12-01 09:04:33.004206998 +0100 +++ mutant2.py 2010-12-01 13:09:02.334207000 +0100 @@ -65,7 +65,7 @@ spline_on_site=True) #first argument -modelname, respos, restyp, chain, = sys.argv[1:] +modelname, respos, restyp, chain, respos2, restyp2, chain2 = sys.argv[1:] log.verbose() @@ -98,6 +98,12 @@ #perform the mutate residue operation s.mutate(residue_type=restyp) + + +s1=selection(mdl1.chains[chain2].residues[respos2]) +s1.mutate(residue_type=restyp2) + + #get two copies of the sequence. A modeller trick to get things set up ali.append_model(mdl1, align_codes=modelname) @@ -145,26 +151,30 @@ #residue, in second pass, include nonbonded neighboring atoms) #set up the mutate residue selection segment s = selection(mdl1.chains[chain].residues[respos]) - +s1=selection(mdl1.chains[chain2].residues[respos2]) mdl1.restraints.unpick_all() mdl1.restraints.pick(s) s.energy() +s1.energy() s.randomize_xyz(deviation=4.0) +s1.randomize_xyz(deviation=4.0) mdl1.env.edat.nonbonded_sel_atoms=2 optimize(s, sched) +optimize(s1, sched) #feels environment (energy computed on pairs that have at least one member #in the selected) mdl1.env.edat.nonbonded_sel_atoms=1 optimize(s, sched) +optimize(s1, sched) s.energy() - +s1.energy() #give a proper name -mdl1.write(file=modelname+restyp+respos+'.pdb') +mdl1.write(file=modelname+restyp+respos+'_'+respos2+restyp2+'.pdb') #delete the temporary file os.remove(modelname+restyp+respos+'.tmp')