[modeller_usage] How to generate a model with double mutant, combination of mutants by using mutate_model.py ?]
To: , ,
Subject: [modeller_usage] How to generate a model with double mutant, combination of mutants by using mutate_model.py ?]
From: "Mahesh Velusamy" <>
Date: Mon, 6 Jun 2016 18:15:22 +0530 (IST)
Dear All,
As you all know that current mutate_model.py works only for single mutants
but I want to make it for double and combination of mutants. So , Kindly
do let me know that Is it possible ?
Thanking you in advance
import sys
import os
from modeller import *
from modeller.optimizers import molecular_dynamics, conjugate_gradients
from modeller.automodel import autosched
#
# mutate_model.py
#
# Usage: python mutate_model.py modelname respos resname chain > logfile
#
# Example: python mutate_model.py 1t29 1699 LEU A > 1t29.log
#
#
# Creates a single in silico point mutation to sidechain type and at residue position
# input by the user, in the structure whose file is modelname.pdb
# The conformation of the mutant sidechain is optimized by conjugate gradient and
# refined using some MD.
#
# Note: if the model has no chain identifier, specify "" for the chain argument.
#
def optimize(atmsel, sched):
#conjugate gradient
for step in sched:
step.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)
#md
refine(atmsel)
cg = conjugate_gradients()
cg.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)
#molecular dynamics
def refine(atmsel):
# at T=1000, max_atom_shift for 4fs is cca 0.15 A.
md = molecular_dynamics(cap_atom_shift=0.39, md_time_step=4.0,
md_return='FINAL')
init_vel = True
for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)),
(200, 600,
(1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
for temp in temps:
md.optimize(atmsel, init_velocities=init_vel, temperature=temp,
max_iterations=its, equilibrate=equil)
init_vel = False
#use homologs and dihedral library for dihedral angle restraints
def make_restraints(mdl1, aln):
rsr = mdl1.restraints
rsr.clear()
s = selection(mdl1)
for typ in ('stereo', 'phi-psi_binormal'):
rsr.make(s, restraint_type=typ, aln=aln, spline_on_site=True)
for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'):
rsr.make(s, restraint_type=typ+'_dihedral', spline_range=4.0,
spline_dx=0.3, spline_min_points = 5, aln=aln,
spline_on_site=True)
#first argument
modelname, respos, restyp, chain,pdb_filename, out_name = sys.argv[1:]
log.verbose()
# Set a different value for rand_seed to get a different final model
env = environ(rand_seed=-49837)
env.io.hetatm = True
#soft sphere potential
env.edat.dynamic_sphere=False
#lennard-jones potential (more accurate)
env.edat.dynamic_lennard=True
env.edat.contact_shell = 4.0
env.edat.update_dynamic = 0.39
# Read customized topology file with phosphoserines (or standard one)
env.libs.topology.read(file='$(LIB)/top_heav.lib')
# Read customized CHARMM parameter library with phosphoserines (or standard one)
env.libs.parameters.read(file='$(LIB)/par.lib')
# Read the original PDB file and copy its sequence to the alignment array:
mdl1 = model(env, file=pdb_filename)
ali = alignment(env)
ali.append_model(mdl1, atom_files=pdb_filename, align_codes=modelname)
#set up the mutate residue selection segment
s = selection(mdl1.chains[chain].residues[respos])
#perform the mutate residue operation
s.mutate(residue_type=restyp)
#get two copies of the sequence. A modeller trick to get things set up
ali.append_model(mdl1, align_codes=modelname)
# Generate molecular topology for mutant
mdl1.clear_topology()
mdl1.generate_topology(ali[-1])
# Transfer all the coordinates you can from the template native structure
# to the mutant (this works even if the order of atoms in the native PDB
# file is not standard):
#here we are generating the model by reading the template coordinates
mdl1.transfer_xyz(ali)
# Build the remaining unknown coordinates
mdl1.build(initialize_xyz=False, build_method='INTERNAL_COORDINATES')
#yes model2 is the same file as model1. It's a modeller trick.
mdl2 = model(env, file=pdb_filename)
#required to do a transfer_res_numb
#ali.append_model(mdl2, atom_files=modelname, align_codes=modelname)
#transfers from "model 2" to "model 1"
mdl1.res_num_from(mdl2,ali)
#It is usually necessary to write the mutated sequence out and read it in
#before proceeding, because not all sequence related information about MODEL
#is changed by this command (e.g., internal coordinates, charges, and atom
#types and radii are not updated).
mdl1.write(file=modelname+restyp+respos+chain+'.tmp')
mdl1.read(file=modelname+restyp+respos+chain+'.tmp')
#set up restraints before computing energy
#we do this a second time because the model has been written out and read in,
#clearing the previously set restraints
make_restraints(mdl1, ali)
#a non-bonded pair has to have at least as many selected atoms
mdl1.env.edat.nonbonded_sel_atoms=1
sched = autosched.loop.make_for_model(mdl1)
#only optimize the selected residue (in first pass, just atoms in selected
#residue, in second pass, include nonbonded neighboring atoms)
#set up the mutate residue selection segment
s = selection(mdl1.chains[chain].residues[respos])
mdl1.restraints.unpick_all()
mdl1.restraints.pick(s)
s.energy()
s.randomize_xyz(deviation=4.0)
mdl1.env.edat.nonbonded_sel_atoms=2
optimize(s, sched)
#feels environment (energy computed on pairs that have at least one member
#in the selected)
mdl1.env.edat.nonbonded_sel_atoms=1
optimize(s, sched)
s.energy()
#give a proper name
mdl1.write(file=out_name)
#delete the temporary file
os.remove(modelname+restyp+respos+chain+'.tmp')