[Date Prev ][Date Next ][Thread Prev ][Thread Next ][Date Index ][Thread Index ]
[modeller_usage] modeling a chimeric protein
To : modeller_usageATsalilab.org
Subject : [modeller_usage] modeling a chimeric protein
From : Ayesha Fatima <ayeshafatima.69ATgmail.com >
Date : Sun, 22 Apr 2018 22:44:40 +0800
Dear all,
I have to model a chimeric protein of two known sequnces. I have gone through the previous archives and have come across the emails of people who have done it.
however, I am confused with how to start the first alignment to get the following alignment file
>P1;proteinA
structureX:proteinA
aaaaaaaaaaaaaaaaaaaaaaaaaaaa----------------------------------*
>P1;proteinB
structureX:proteinB
----------------------------bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb*
>P1;chimera
sequence:chimera
aaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb* is this the .ali file to give for alignment. Which script should I use. Kindly help with which is the correct script to use. Thank you Regards Ayesha Fatima QIUP, Ipoh, Perak
from modeller import *
log.verbose()
env = environ()
env.libs.topology.read(file='$(LIB)/top_heav.lib')
# Read aligned structure(s):
aln = alignment(env)
aln.append(file='fip.ali', align_codes='all')
aln_block = len(aln)
# Read aligned sequence(s):
aln.append(file='fip.ali', align_codes='fip')
# Structure sensitive variable gap penalty sequence-sequence alignment:
aln.salign(output='', max_gap_length=20,
gap_function=True, # to use structure-dependent gap penalty
alignment_type='PAIRWISE', align_block=aln_block,
feature_weights=(1., 0., 0., 0., 0., 0.), overhang=0,
gap_penalties_1d=(-450, 0),
gap_penalties_2d=(0.35, 1.2, 0.9, 1.2, 0.6, 8.6, 1.2, 0., 0.),
similarity_flag=True)
aln.write(file='fip-mult.ali', alignment_format='PIR')
aln.write(file='fip-mult.pap', alignment_format='PAP')
# Illustrates the SALIGN multiple structure/sequence alignment
from modeller import *
log.verbose()
env = environ()
env.io.atom_files_directory = './:../atom_files/'
aln = alignment(env)
for (code, chain) in (('1osy', 'A'), ('3ob4', 'A')):
mdl = model(env, file=code, model_segment=('FIRST:'+chain, 'LAST:'+chain))
aln.append_model(mdl, atom_files=code, align_codes=code+chain)
for (weights, write_fit, whole) in (((1., 0., 0., 0., 1., 0.), False, True),
((1., 0.5, 1., 1., 1., 0.), False, True),
((1., 1., 1., 1., 1., 0.), True, False)):
aln.salign(rms_cutoff=3.5, normalize_pp_scores=False,
rr_file='$(LIB)/as1.sim.mat', overhang=30,
gap_penalties_1d=(-450, -50),
gap_penalties_3d=(0, 3), gap_gap_score=0, gap_residue_score=0,
dendrogram_file='fm00495.tree',
alignment_type='tree', # If 'progresive', the tree is not
# computed and all structues will be
# aligned sequentially to the first
feature_weights=weights, # For a multiple sequence alignment only
# the first feature needs to be non-zero
improve_alignment=True, fit=True, write_fit=write_fit,
write_whole_pdb=whole, output='ALIGNMENT QUALITY')
aln.write(file='fip-arah.pap', alignment_format='PAP')
aln.write(file='fip-arah.ali', alignment_format='PIR')
aln.salign(rms_cutoff=1.0, normalize_pp_scores=False,
rr_file='$(LIB)/as1.sim.mat', overhang=30,
gap_penalties_1d=(-450, -50), gap_penalties_3d=(0, 3),
gap_gap_score=0, gap_residue_score=0, dendrogram_file='fa.tree',
alignment_type='progressive', feature_weights=[0]*6,
improve_alignment=False, fit=False, write_fit=True,
write_whole_pdb=False, output='QUALITY')