Mutate model: Difference between revisions
No edit summary |
(Add to Examples category) |
||
(11 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
The script below takes a given PDB file, and mutates a single residue. The residue's position is then optimized, and the unoptimized and optimized energies are reported. | The script below takes a given PDB file, and mutates a single residue. The residue's position is then optimized, and the unoptimized and optimized energies are reported. | ||
Note that this script if run multiple times will produce the same model each time, because Modeller is deterministic. If you want to build multiple models, change the value of <code>rand_seed</code> (see comments in the script) each time. This may be useful if some models, for example, cannot be optimized due to steric clashes. | |||
< | |||
<syntaxhighlight lang="python"> | |||
import sys | import sys | ||
import os | import os | ||
from modeller import * | |||
from modeller.optimizers import MolecularDynamics, ConjugateGradients | |||
from modeller.automodel import autosched | |||
# | # | ||
# mutate_model.py | # mutate_model.py | ||
# | # | ||
# Usage: | # Usage: python mutate_model.py modelname respos resname chain > logfile | ||
# | # | ||
# Example: | # Example: python mutate_model.py 1t29 1699 LEU A > 1t29.log | ||
# | # | ||
# | # | ||
Line 19: | Line 25: | ||
# The conformation of the mutant sidechain is optimized by conjugate gradient and | # The conformation of the mutant sidechain is optimized by conjugate gradient and | ||
# refined using some MD. | # refined using some MD. | ||
# | |||
# Note: if the model has no chain identifier, specify "" for the chain argument. | |||
# | # | ||
def optimize( | def optimize(atmsel, sched): | ||
#conjugate gradient | #conjugate gradient | ||
for step in | for step in sched: | ||
step.optimize(atmsel, max_iterations=200, min_atom_shift=0.001) | |||
#md | #md | ||
refine( | refine(atmsel) | ||
cg = ConjugateGradients() | |||
cg.optimize(atmsel, max_iterations=200, min_atom_shift=0.001) | |||
#molecular dynamics | #molecular dynamics | ||
def refine( | def refine(atmsel): | ||
# at T=1000, max_atom_shift for 4fs is cca 0.15 A. | # at T=1000, max_atom_shift for 4fs is cca 0.15 A. | ||
md = MolecularDynamics(cap_atom_shift=0.39, md_time_step=4.0, | |||
md_return='FINAL') | |||
init_vel = True | init_vel = True | ||
for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)), | for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)), | ||
(200, 600, (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))): | (200, 600, | ||
(1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))): | |||
for temp in temps: | for temp in temps: | ||
md.optimize(atmsel, init_velocities=init_vel, temperature=temp, | |||
max_iterations=its, equilibrate=equil) | |||
init_vel = False | init_vel = False | ||
Line 51: | Line 59: | ||
rsr = mdl1.restraints | rsr = mdl1.restraints | ||
rsr.clear() | rsr.clear() | ||
s = Selection(mdl1) | |||
for typ in ('stereo', 'phi-psi_binormal'): | for typ in ('stereo', 'phi-psi_binormal'): | ||
rsr.make(restraint_type=typ, aln=aln, spline_on_site=True) | rsr.make(s, restraint_type=typ, aln=aln, spline_on_site=True) | ||
for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'): | for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'): | ||
rsr.make(restraint_type=typ+'_dihedral', spline_range=4.0, spline_dx=0.3, | rsr.make(s, restraint_type=typ+'_dihedral', spline_range=4.0, | ||
spline_dx=0.3, spline_min_points = 5, aln=aln, | |||
spline_on_site=True) | |||
#first argument | #first argument | ||
Line 63: | Line 73: | ||
log.verbose() | log.verbose() | ||
env = | # Set a different value for rand_seed to get a different final model | ||
env = Environ(rand_seed=-49837) | |||
env.io.hetatm = True | env.io.hetatm = True | ||
#soft sphere potential | #soft sphere potential | ||
env.edat.dynamic_sphere=False | env.edat.dynamic_sphere=False | ||
#lennard-jones potential (more | #lennard-jones potential (more accurate) | ||
env.edat.dynamic_lennard=True | env.edat.dynamic_lennard=True | ||
env.edat.contact_shell = 4.0 | env.edat.contact_shell = 4.0 | ||
Line 80: | Line 92: | ||
# Read the original PDB file and copy its sequence to the alignment array: | # Read the original PDB file and copy its sequence to the alignment array: | ||
mdl1 = | mdl1 = Model(env, file=modelname) | ||
ali = | ali = Alignment(env) | ||
ali.append_model(mdl1, atom_files=modelname, align_codes=modelname) | ali.append_model(mdl1, atom_files=modelname, align_codes=modelname) | ||
#set up the mutate residue selection segment | #set up the mutate residue selection segment | ||
mdl1. | s = Selection(mdl1.chains[chain].residues[respos]) | ||
#perform the mutate residue operation | #perform the mutate residue operation | ||
s.mutate(residue_type=restyp) | |||
#get two copies of the sequence. A modeller trick to get things set up | #get two copies of the sequence. A modeller trick to get things set up | ||
ali.append_model(mdl1, align_codes=modelname) | ali.append_model(mdl1, align_codes=modelname) | ||
# Generate molecular topology for mutant | # Generate molecular topology for mutant | ||
mdl1.generate_topology(ali | mdl1.clear_topology() | ||
mdl1.generate_topology(ali[-1]) | |||
# Transfer all the coordinates you can from the template native structure | # Transfer all the coordinates you can from the template native structure | ||
# to the mutant (this works even if the order of atoms in the native PDB | # to the mutant (this works even if the order of atoms in the native PDB | ||
# file is not standard): | # file is not standard): | ||
#here we are generating the model by reading the template coordinates | #here we are generating the model by reading the template coordinates | ||
Line 109: | Line 119: | ||
#yes model2 is the same file as model1. It's a modeller trick. | #yes model2 is the same file as model1. It's a modeller trick. | ||
mdl2 = | mdl2 = Model(env, file=modelname) | ||
#required to do a transfer_res_numb | #required to do a transfer_res_numb | ||
Line 132: | Line 142: | ||
mdl1.env.edat.nonbonded_sel_atoms=1 | mdl1.env.edat.nonbonded_sel_atoms=1 | ||
sched = autosched.loop.make_for_model(mdl1) | |||
#only optimize the selected residue (in first pass, just atoms in selected | #only optimize the selected residue (in first pass, just atoms in selected | ||
#residue, in second pass, include nonbonded neighboring atoms) | #residue, in second pass, include nonbonded neighboring atoms) | ||
#set up the mutate residue selection segment | #set up the mutate residue selection segment | ||
mdl1. | s = Selection(mdl1.chains[chain].residues[respos]) | ||
mdl1.restraints.unpick_all() | mdl1.restraints.unpick_all() | ||
mdl1.restraints.pick() | mdl1.restraints.pick(s) | ||
s.energy() | |||
s.randomize_xyz(deviation=4.0) | |||
mdl1.env.edat.nonbonded_sel_atoms=2 | mdl1.env.edat.nonbonded_sel_atoms=2 | ||
optimize( | optimize(s, sched) | ||
#feels environment (energy computed on pairs that have at least one member | #feels environment (energy computed on pairs that have at least one member | ||
#in the selected) | #in the selected) | ||
mdl1.env.edat.nonbonded_sel_atoms=1 | mdl1.env.edat.nonbonded_sel_atoms=1 | ||
optimize( | optimize(s, sched) | ||
s.energy() | |||
#give a proper name | #give a proper name | ||
Line 162: | Line 170: | ||
#delete the temporary file | #delete the temporary file | ||
os.remove(modelname+restyp+respos+'.tmp') | os.remove(modelname+restyp+respos+'.tmp') | ||
</syntaxhighlight> | |||
</ | |||
[[Category:Examples]] |
Latest revision as of 21:17, 16 August 2022
The script below takes a given PDB file, and mutates a single residue. The residue's position is then optimized, and the unoptimized and optimized energies are reported.
Note that this script if run multiple times will produce the same model each time, because Modeller is deterministic. If you want to build multiple models, change the value of rand_seed
(see comments in the script) each time. This may be useful if some models, for example, cannot be optimized due to steric clashes.
import sys
import os
from modeller import *
from modeller.optimizers import MolecularDynamics, ConjugateGradients
from modeller.automodel import autosched
#
# mutate_model.py
#
# Usage: python mutate_model.py modelname respos resname chain > logfile
#
# Example: python mutate_model.py 1t29 1699 LEU A > 1t29.log
#
#
# Creates a single in silico point mutation to sidechain type and at residue position
# input by the user, in the structure whose file is modelname.pdb
# The conformation of the mutant sidechain is optimized by conjugate gradient and
# refined using some MD.
#
# Note: if the model has no chain identifier, specify "" for the chain argument.
#
def optimize(atmsel, sched):
#conjugate gradient
for step in sched:
step.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)
#md
refine(atmsel)
cg = ConjugateGradients()
cg.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)
#molecular dynamics
def refine(atmsel):
# at T=1000, max_atom_shift for 4fs is cca 0.15 A.
md = MolecularDynamics(cap_atom_shift=0.39, md_time_step=4.0,
md_return='FINAL')
init_vel = True
for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)),
(200, 600,
(1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
for temp in temps:
md.optimize(atmsel, init_velocities=init_vel, temperature=temp,
max_iterations=its, equilibrate=equil)
init_vel = False
#use homologs and dihedral library for dihedral angle restraints
def make_restraints(mdl1, aln):
rsr = mdl1.restraints
rsr.clear()
s = Selection(mdl1)
for typ in ('stereo', 'phi-psi_binormal'):
rsr.make(s, restraint_type=typ, aln=aln, spline_on_site=True)
for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'):
rsr.make(s, restraint_type=typ+'_dihedral', spline_range=4.0,
spline_dx=0.3, spline_min_points = 5, aln=aln,
spline_on_site=True)
#first argument
modelname, respos, restyp, chain, = sys.argv[1:]
log.verbose()
# Set a different value for rand_seed to get a different final model
env = Environ(rand_seed=-49837)
env.io.hetatm = True
#soft sphere potential
env.edat.dynamic_sphere=False
#lennard-jones potential (more accurate)
env.edat.dynamic_lennard=True
env.edat.contact_shell = 4.0
env.edat.update_dynamic = 0.39
# Read customized topology file with phosphoserines (or standard one)
env.libs.topology.read(file='$(LIB)/top_heav.lib')
# Read customized CHARMM parameter library with phosphoserines (or standard one)
env.libs.parameters.read(file='$(LIB)/par.lib')
# Read the original PDB file and copy its sequence to the alignment array:
mdl1 = Model(env, file=modelname)
ali = Alignment(env)
ali.append_model(mdl1, atom_files=modelname, align_codes=modelname)
#set up the mutate residue selection segment
s = Selection(mdl1.chains[chain].residues[respos])
#perform the mutate residue operation
s.mutate(residue_type=restyp)
#get two copies of the sequence. A modeller trick to get things set up
ali.append_model(mdl1, align_codes=modelname)
# Generate molecular topology for mutant
mdl1.clear_topology()
mdl1.generate_topology(ali[-1])
# Transfer all the coordinates you can from the template native structure
# to the mutant (this works even if the order of atoms in the native PDB
# file is not standard):
#here we are generating the model by reading the template coordinates
mdl1.transfer_xyz(ali)
# Build the remaining unknown coordinates
mdl1.build(initialize_xyz=False, build_method='INTERNAL_COORDINATES')
#yes model2 is the same file as model1. It's a modeller trick.
mdl2 = Model(env, file=modelname)
#required to do a transfer_res_numb
#ali.append_model(mdl2, atom_files=modelname, align_codes=modelname)
#transfers from "model 2" to "model 1"
mdl1.res_num_from(mdl2,ali)
#It is usually necessary to write the mutated sequence out and read it in
#before proceeding, because not all sequence related information about MODEL
#is changed by this command (e.g., internal coordinates, charges, and atom
#types and radii are not updated).
mdl1.write(file=modelname+restyp+respos+'.tmp')
mdl1.read(file=modelname+restyp+respos+'.tmp')
#set up restraints before computing energy
#we do this a second time because the model has been written out and read in,
#clearing the previously set restraints
make_restraints(mdl1, ali)
#a non-bonded pair has to have at least as many selected atoms
mdl1.env.edat.nonbonded_sel_atoms=1
sched = autosched.loop.make_for_model(mdl1)
#only optimize the selected residue (in first pass, just atoms in selected
#residue, in second pass, include nonbonded neighboring atoms)
#set up the mutate residue selection segment
s = Selection(mdl1.chains[chain].residues[respos])
mdl1.restraints.unpick_all()
mdl1.restraints.pick(s)
s.energy()
s.randomize_xyz(deviation=4.0)
mdl1.env.edat.nonbonded_sel_atoms=2
optimize(s, sched)
#feels environment (energy computed on pairs that have at least one member
#in the selected)
mdl1.env.edat.nonbonded_sel_atoms=1
optimize(s, sched)
s.energy()
#give a proper name
mdl1.write(file=modelname+restyp+respos+'.pdb')
#delete the temporary file
os.remove(modelname+restyp+respos+'.tmp')