The script below takes a given PDB file, and mutates a single residue. The residue's position is then optimized, and the unoptimized and optimized energies are reported.
#!python import sys import os # # mutate_model.py # # Usage: mod8v2 - < mutate_model.py modelname respos resname chain > logfile # # Example: mod8v2 - < mutate_model.py 1t29 1699 LEU A > 1t29.log # # # Creates a single in silico point mutation to sidechain type and at residue position # input by the user, in the structure whose file is modelname.pdb # The conformation of the mutant sidechain is optimized by conjugate gradient and # refined using some MD. # def optimize(mdl1): #conjugate gradient for step in range(0,len(mdl1.schedule)): mdl1.schedule.step = step + 1 mdl1.optimize(optimization_method=1,max_iterations=200,min_atom_shift=0.001) #md refine(mdl1) mdl1.optimize(optimization_method=1,max_iterations=200,min_atom_shift=0.001) #molecular dynamics def refine(mdl1): # at T=1000, max_atom_shift for 4fs is cca 0.15 A. init_vel = True for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)), (200, 600, (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))): for temp in temps: mdl1.optimize(cap_atom_shift=0.39, md_time_step=4.0, optimization_method=3, md_return='FINAL', init_velocities=init_vel, temperature=temp, max_iterations=its, equilibrate=equil) init_vel = False #use homologs and dihedral library for dihedral angle restraints def make_restraints(mdl1, aln): rsr = mdl1.restraints rsr.clear() for typ in ('stereo', 'phi-psi_binormal'): rsr.make(restraint_type=typ, aln=aln, spline_on_site=True) for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'): rsr.make(restraint_type=typ+'_dihedral', spline_range=4.0, spline_dx=0.3, spline_min_points = 5, aln=aln, spline_on_site=True) #first argument modelname, respos, restyp, chain, = sys.argv[1:] log.verbose() env = environ(rand_seed=-49837) env.io.hetatm = True #soft sphere potential env.edat.dynamic_sphere=False #lennard-jones potential (more accuate) env.edat.dynamic_lennard=True env.edat.contact_shell = 4.0 env.edat.update_dynamic = 0.39 # Read customized topology file with phosphoserines (or standard one) env.libs.topology.read(file='$(LIB)/top_heav.lib') # Read customized CHARMM parameter library with phosphoserines (or standard one) env.libs.parameters.read(file='$(LIB)/par.lib') # Read the original PDB file and copy its sequence to the alignment array: mdl1 = model(env, file=modelname) ali = alignment(env) ali.append_model(mdl1, atom_files=modelname, align_codes=modelname) #set up the mutate residue selection segment mdl1.pick_atoms(pick_atoms_set=1, selection_from ='ALL', res_types ='ALL', selection_segment = (respos+':'+chain, respos+':'+chain), atom_types = 'ALL', selection_status = 'INITIALIZE') #perform the mutate residue operation mdl1.mutate(residue_type=restyp) #get two copies of the sequence. A modeller trick to get things set up ali.append_model(mdl1, align_codes=modelname) # Generate molecular topology for mutant mdl1.generate_topology(ali, sequence=modelname) # Transfer all the coordinates you can from the template native structure # to the mutant (this works even if the order of atoms in the native PDB # file is not standard): #here we are generating the model by reading the template coordinates mdl1.transfer_xyz(ali) # Build the remaining unknown coordinates mdl1.build(initialize_xyz=False, build_method='INTERNAL_COORDINATES') #yes model2 is the same file as model1. It's a modeller trick. mdl2 = model(env, file=modelname) #required to do a transfer_res_numb #ali.append_model(mdl2, atom_files=modelname, align_codes=modelname) #transfers from "model 2" to "model 1" mdl1.res_num_from(mdl2,ali) #It is usually necessary to write the mutated sequence out and read it in #before proceeding, because not all sequence related information about MODEL #is changed by this command (e.g., internal coordinates, charges, and atom #types and radii are not updated). mdl1.write(file=modelname+restyp+respos+'.tmp') mdl1.read(file=modelname+restyp+respos+'.tmp') #set up restraints before computing energy #we do this a second time because the model has been written out and read in, #clearing the previously set restraints make_restraints(mdl1, ali) #a non-bonded pair has to have at least as many selected atoms mdl1.env.edat.nonbonded_sel_atoms=1 mdl1.schedule.make(library_schedule=6) #only optimize the selected residue (in first pass, just atoms in selected #residue, in second pass, include nonbonded neighboring atoms) #set up the mutate residue selection segment mdl1.pick_atoms(pick_atoms_set=1, selection_from ='ALL', res_types ='ALL', selection_segment = (respos+':'+chain, respos+':'+chain), atom_types = 'ALL', selection_status = 'INITIALIZE') mdl1.restraints.unpick_all() mdl1.restraints.pick() mdl1.energy() mdl1.randomize_xyz(deviation=4.0) mdl1.env.edat.nonbonded_sel_atoms=2 optimize(mdl1) #feels environment (energy computed on pairs that have at least one member #in the selected) mdl1.env.edat.nonbonded_sel_atoms=1 optimize(mdl1) mdl1.energy() #give a proper name mdl1.write(file=modelname+restyp+respos+'.pdb') #delete the temporary file os.remove(modelname+restyp+respos+'.tmp');