No edit summary
No edit summary
Line 6: Line 6:
import sys
import sys
import os
import os
from modeller import *
from modeller.optimizers import molecular_dynamics, conjugate_gradients
from modeller.automodel import autosched


#
#
#  mutate_model.py
#  mutate_model.py
#  
#
#    Usage:  mod8v2 - < mutate_model.py modelname respos resname chain > logfile
#    Usage:  mod9v1 - < mutate_model.py modelname respos resname chain > logfile
#  
#
#    Example: mod8v2 - < mutate_model.py 1t29 1699 LEU A > 1t29.log
#    Example: mod9v1 - < mutate_model.py 1t29 1699 LEU A > 1t29.log
#
#
#
#
Line 22: Line 26:




def optimize(mdl1):
def optimize(atmsel, sched):
     #conjugate gradient
     #conjugate gradient
     for step in range(0,len(mdl1.schedule)):
     for step in sched:
         mdl1.schedule.step = step + 1
         step.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)
        mdl1.optimize(optimization_method=1,max_iterations=200,min_atom_shift=0.001)
     #md
     #md
     refine(mdl1)
     refine(atmsel)
     mdl1.optimize(optimization_method=1,max_iterations=200,min_atom_shift=0.001)
     cg = conjugate_gradients()
 
    cg.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)




#molecular dynamics
#molecular dynamics
def refine(mdl1):
def refine(atmsel):
     # at T=1000, max_atom_shift for 4fs is cca 0.15 A.
     # at T=1000, max_atom_shift for 4fs is cca 0.15 A.
    md = molecular_dynamics(cap_atom_shift=0.39, md_time_step=4.0,
                            md_return='FINAL')
     init_vel = True
     init_vel = True
     for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)),
     for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)),
                                 (200, 600, (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
                                 (200, 600,
                                (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
         for temp in temps:
         for temp in temps:
             mdl1.optimize(cap_atom_shift=0.39, md_time_step=4.0, optimization_method=3,
             md.optimize(atmsel, init_velocities=init_vel, temperature=temp,
                          md_return='FINAL', init_velocities=init_vel, temperature=temp,
                        max_iterations=its, equilibrate=equil)
                          max_iterations=its, equilibrate=equil)
             init_vel = False
             init_vel = False




Line 51: Line 55:
   rsr = mdl1.restraints
   rsr = mdl1.restraints
   rsr.clear()
   rsr.clear()
  s = selection(mdl1)
   for typ in ('stereo', 'phi-psi_binormal'):
   for typ in ('stereo', 'phi-psi_binormal'):
       rsr.make(restraint_type=typ, aln=aln, spline_on_site=True)
       rsr.make(s, restraint_type=typ, aln=aln, spline_on_site=True)
   for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'):
   for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'):
       rsr.make(restraint_type=typ+'_dihedral', spline_range=4.0, spline_dx=0.3,
       rsr.make(s, restraint_type=typ+'_dihedral', spline_range=4.0,
                spline_min_points = 5, aln=aln, spline_on_site=True)
                spline_dx=0.3, spline_min_points = 5, aln=aln,
                spline_on_site=True)


#first argument
#first argument
Line 85: Line 91:


#set up the mutate residue selection segment
#set up the mutate residue selection segment
mdl1.pick_atoms(pick_atoms_set=1, selection_from ='ALL', res_types ='ALL',
s = selection(mdl1.chains[chain].residues[respos])
                selection_segment = (respos+':'+chain, respos+':'+chain),
                atom_types = 'ALL', selection_status = 'INITIALIZE')


#perform the mutate residue operation
#perform the mutate residue operation
mdl1.mutate(residue_type=restyp)
s.mutate(residue_type=restyp)
 
#get two copies of the sequence.  A modeller trick to get things set up
#get two copies of the sequence.  A modeller trick to get things set up
ali.append_model(mdl1, align_codes=modelname)
ali.append_model(mdl1, align_codes=modelname)


# Generate molecular topology for mutant
# Generate molecular topology for mutant
mdl1.generate_topology(ali, sequence=modelname)
mdl1.clear_topology()
mdl1.generate_topology(ali[-1])




# Transfer all the coordinates you can from the template native structure
# Transfer all the coordinates you can from the template native structure
# to the mutant (this works even if the order of atoms in the native PDB  
# to the mutant (this works even if the order of atoms in the native PDB
# file is not standard):
# file is not standard):
#here we are generating the model by reading the template coordinates
#here we are generating the model by reading the template coordinates
Line 132: Line 136:
mdl1.env.edat.nonbonded_sel_atoms=1
mdl1.env.edat.nonbonded_sel_atoms=1


mdl1.schedule.make(library_schedule=6)
sched = autosched.loop.make_for_model(mdl1)


#only optimize the selected residue (in first pass, just atoms in selected
#only optimize the selected residue (in first pass, just atoms in selected
#residue, in second pass, include nonbonded neighboring atoms)
#residue, in second pass, include nonbonded neighboring atoms)
#set up the mutate residue selection segment
#set up the mutate residue selection segment
mdl1.pick_atoms(pick_atoms_set=1, selection_from ='ALL', res_types ='ALL',
s = selection(mdl1.chains[chain].residues[respos])
                selection_segment = (respos+':'+chain, respos+':'+chain),
                atom_types = 'ALL', selection_status = 'INITIALIZE')


mdl1.restraints.unpick_all()
mdl1.restraints.unpick_all()
mdl1.restraints.pick()
mdl1.restraints.pick(s)


mdl1.energy()
s.energy()


mdl1.randomize_xyz(deviation=4.0)
s.randomize_xyz(deviation=4.0)


mdl1.env.edat.nonbonded_sel_atoms=2
mdl1.env.edat.nonbonded_sel_atoms=2
optimize(mdl1)
optimize(s, sched)


#feels environment (energy computed on pairs that have at least one member
#feels environment (energy computed on pairs that have at least one member
#in the selected)
#in the selected)
mdl1.env.edat.nonbonded_sel_atoms=1
mdl1.env.edat.nonbonded_sel_atoms=1
optimize(mdl1)
optimize(s, sched)


mdl1.energy()
s.energy()


#give a proper name
#give a proper name
Line 162: Line 164:


#delete the temporary file
#delete the temporary file
os.remove(modelname+restyp+respos+'.tmp');
os.remove(modelname+restyp+respos+'.tmp')
 
</nowiki></pre>
</nowiki></pre>





Revision as of 00:00, 1 January 1970

The script below takes a given PDB file, and mutates a single residue. The residue's position is then optimized, and the unoptimized and optimized energies are reported.


#!python
import sys
import os

from modeller import *
from modeller.optimizers import molecular_dynamics, conjugate_gradients
from modeller.automodel import autosched

#
#  mutate_model.py
#
#     Usage:   mod9v1 - < mutate_model.py modelname respos resname chain > logfile
#
#     Example: mod9v1 - < mutate_model.py 1t29 1699 LEU A > 1t29.log
#
#
#  Creates a single in silico point mutation to sidechain type and at residue position
#  input by the user, in the structure whose file is modelname.pdb
#  The conformation of the mutant sidechain is optimized by conjugate gradient and
#  refined using some MD.
#


def optimize(atmsel, sched):
    #conjugate gradient
    for step in sched:
        step.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)
    #md
    refine(atmsel)
    cg = conjugate_gradients()
    cg.optimize(atmsel, max_iterations=200, min_atom_shift=0.001)


#molecular dynamics
def refine(atmsel):
    # at T=1000, max_atom_shift for 4fs is cca 0.15 A.
    md = molecular_dynamics(cap_atom_shift=0.39, md_time_step=4.0,
                            md_return='FINAL')
    init_vel = True
    for (its, equil, temps) in ((200, 20, (150.0, 250.0, 400.0, 700.0, 1000.0)),
                                (200, 600,
                                 (1000.0, 800.0, 600.0, 500.0, 400.0, 300.0))):
        for temp in temps:
            md.optimize(atmsel, init_velocities=init_vel, temperature=temp,
                         max_iterations=its, equilibrate=equil)
            init_vel = False


#use homologs and dihedral library for dihedral angle restraints
def make_restraints(mdl1, aln):
   rsr = mdl1.restraints
   rsr.clear()
   s = selection(mdl1)
   for typ in ('stereo', 'phi-psi_binormal'):
       rsr.make(s, restraint_type=typ, aln=aln, spline_on_site=True)
   for typ in ('omega', 'chi1', 'chi2', 'chi3', 'chi4'):
       rsr.make(s, restraint_type=typ+'_dihedral', spline_range=4.0,
                spline_dx=0.3, spline_min_points = 5, aln=aln,
                spline_on_site=True)

#first argument
modelname, respos, restyp, chain, = sys.argv[1:]


log.verbose()

env = environ(rand_seed=-49837)
env.io.hetatm = True
#soft sphere potential
env.edat.dynamic_sphere=False
#lennard-jones potential (more accuate)
env.edat.dynamic_lennard=True
env.edat.contact_shell = 4.0
env.edat.update_dynamic = 0.39

# Read customized topology file with phosphoserines (or standard one)
env.libs.topology.read(file='$(LIB)/top_heav.lib')

# Read customized CHARMM parameter library with phosphoserines (or standard one)
env.libs.parameters.read(file='$(LIB)/par.lib')


# Read the original PDB file and copy its sequence to the alignment array:
mdl1 = model(env, file=modelname)
ali = alignment(env)
ali.append_model(mdl1, atom_files=modelname, align_codes=modelname)

#set up the mutate residue selection segment
s = selection(mdl1.chains[chain].residues[respos])

#perform the mutate residue operation
s.mutate(residue_type=restyp)
#get two copies of the sequence.  A modeller trick to get things set up
ali.append_model(mdl1, align_codes=modelname)

# Generate molecular topology for mutant
mdl1.clear_topology()
mdl1.generate_topology(ali[-1])


# Transfer all the coordinates you can from the template native structure
# to the mutant (this works even if the order of atoms in the native PDB
# file is not standard):
#here we are generating the model by reading the template coordinates
mdl1.transfer_xyz(ali)

# Build the remaining unknown coordinates
mdl1.build(initialize_xyz=False, build_method='INTERNAL_COORDINATES')

#yes model2 is the same file as model1.  It's a modeller trick.
mdl2 = model(env, file=modelname)

#required to do a transfer_res_numb
#ali.append_model(mdl2, atom_files=modelname, align_codes=modelname)
#transfers from "model 2" to "model 1"
mdl1.res_num_from(mdl2,ali)

#It is usually necessary to write the mutated sequence out and read it in
#before proceeding, because not all sequence related information about MODEL
#is changed by this command (e.g., internal coordinates, charges, and atom
#types and radii are not updated).

mdl1.write(file=modelname+restyp+respos+'.tmp')
mdl1.read(file=modelname+restyp+respos+'.tmp')

#set up restraints before computing energy
#we do this a second time because the model has been written out and read in,
#clearing the previously set restraints
make_restraints(mdl1, ali)

#a non-bonded pair has to have at least as many selected atoms
mdl1.env.edat.nonbonded_sel_atoms=1

sched = autosched.loop.make_for_model(mdl1)

#only optimize the selected residue (in first pass, just atoms in selected
#residue, in second pass, include nonbonded neighboring atoms)
#set up the mutate residue selection segment
s = selection(mdl1.chains[chain].residues[respos])

mdl1.restraints.unpick_all()
mdl1.restraints.pick(s)

s.energy()

s.randomize_xyz(deviation=4.0)

mdl1.env.edat.nonbonded_sel_atoms=2
optimize(s, sched)

#feels environment (energy computed on pairs that have at least one member
#in the selected)
mdl1.env.edat.nonbonded_sel_atoms=1
optimize(s, sched)

s.energy()

#give a proper name
mdl1.write(file=modelname+restyp+respos+'.pdb')

#delete the temporary file
os.remove(modelname+restyp+respos+'.tmp')