IMP-users
Threads by month
- ----- 2024 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2023 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2022 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2021 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2020 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2019 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2018 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2017 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2016 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2015 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2014 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2013 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2012 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2011 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2010 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
July 2014
- 4 participants
- 13 discussions
ah sorry ! this line gives me the error
h= IMP.atom.Hierarchy.get_children(cs)
thanks
josh
On 2 July 2014 17:45, <imp-users-request(a)salilab.org> wrote:
> Send IMP-users mailing list submissions to
> imp-users(a)salilab.org
>
> To subscribe or unsubscribe via the World Wide Web, visit
> https://salilab.org/mailman/listinfo/imp-users
> or, via email, send a message with subject or body 'help' to
> imp-users-request(a)salilab.org
>
> You can reach the person managing the list at
> imp-users-owner(a)salilab.org
>
> When replying, please edit your Subject line so it is more specific
> than "Re: Contents of IMP-users digest..."
>
>
> Today's Topics:
>
> 1. Re: Sampling and writing to pym/rmf (Barak Raveh) (Barak Raveh)
>
>
> ----------------------------------------------------------------------
>
> Message: 1
> Date: Wed, 2 Jul 2014 09:45:30 -0700
> From: Barak Raveh <barak.raveh(a)gmail.com>
> To: Help and discussion for users of IMP <imp-users(a)salilab.org>
> Subject: Re: [IMP-users] Sampling and writing to pym/rmf (Barak Raveh)
> Message-ID:
> <CAHp+_Uo19VasJDJYi+2CoUUu=
> u_6duKCraVetU4dW45+oDhTAw(a)mail.gmail.com>
> Content-Type: text/plain; charset="utf-8"
>
> Which lines throws the error?
>
>
> On Wed, Jul 2, 2014 at 4:56 AM, Josh Bullock <jma.bullock(a)gmail.com>
> wrote:
>
> > Hi Barek,
> >
> > So I'm not giving hierarchy.get_children the correct input:
> >
> > TypeError: unbound method get_children() must be called with Hierarchy
> > instance as first argument (got ConfigurationSet instance instead)
> >
> > I'm not sure which argument is the hierarchy instance.
> >
> > Thanks,
> >
> > Josh
> >
> > -------------------------------------------------
> >
> > cs= get_conformations(m)
> >
> > for i in range(0, cs.get_number_of_configurations()):
> > JOSH = cs.load_configuration(i)
> > S= IMP.atom.Selection
> > h= IMP.atom.Hierarchy.get_children(cs)
> > tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf")
> > rh = RMF.create_rmf_file(tfn)
> >
> > On 1 July 2014 17:31, <imp-users-request(a)salilab.org> wrote:
> >
> >> Send IMP-users mailing list submissions to
> >> imp-users(a)salilab.org
> >>
> >> To subscribe or unsubscribe via the World Wide Web, visit
> >> https://salilab.org/mailman/listinfo/imp-users
> >> or, via email, send a message with subject or body 'help' to
> >> imp-users-request(a)salilab.org
> >>
> >> You can reach the person managing the list at
> >> imp-users-owner(a)salilab.org
> >>
> >> When replying, please edit your Subject line so it is more specific
> >> than "Re: Contents of IMP-users digest..."
> >>
> >>
> >> Today's Topics:
> >>
> >> 1. Re: Sampling and writing to pym/rmf (Barak Raveh)
> >>
> >>
> >> ----------------------------------------------------------------------
> >>
> >> Message: 1
> >> Date: Tue, 1 Jul 2014 09:31:33 -0700
> >> From: Barak Raveh <barak.raveh(a)gmail.com>
> >> To: Help and discussion for users of IMP <imp-users(a)salilab.org>
> >> Subject: Re: [IMP-users] Sampling and writing to pym/rmf
> >> Message-ID:
> >> <CAHp+_UowiBwJozbwOfi8yFEVt7Z8o2tEZ=
> >> LvYPnJh-LjpC2cSA(a)mail.gmail.com>
> >> Content-Type: text/plain; charset="utf-8"
> >>
> >> Hi Josh, from a very superficial look, your code to write the RMF files
> >> seems fine - do you get an output RMF file? Could you load it in
> Chimera?
> >>
> >>
> >> On Tue, Jul 1, 2014 at 2:40 AM, Josh Bullock <jma.bullock(a)gmail.com>
> >> wrote:
> >>
> >> > Hello,
> >> >
> >> > I'm relatively new to all this so please let me know if i'm making any
> >> > obvious errors ...
> >> >
> >> > Essentially all i'm trying to do is generate an ensemble of models
> made
> >> > from four subunits - constrained by MS connectivity restraints. The
> >> models
> >> > get scored but nothing seems to write to the pymol file. Ideally i'd
> >> like
> >> > to write to an .rmf but i haven't worked that one out either ...
> >> >
> >> > Is this a reasonable way to go about my problem ?
> >> >
> >> > Many thanks,
> >> >
> >> > Josh
> >> >
> >> > -------------------------------------------
> >> >
> >> > import IMP
> >> > import IMP.atom
> >> > import IMP.rmf
> >> > import inspect
> >> > import IMP.container
> >> > import IMP.display
> >> > import IMP.statistics
> >> > #import IMP.example
> >> > import sys, math, os, optparse
> >> > import RMF
> >> >
> >> > from optparse import OptionParser
> >> >
> >> >
> >> > # Convert the arguments into strings and number
> >> > Firstpdb = str(sys.argv[1])
> >> > Secondpdb = str(sys.argv[2])
> >> > Thirdpdb = str(sys.argv[3])
> >> > Fourthpdb = str(sys.argv[4])
> >> > models = float(sys.argv[5])
> >> >
> >> > #*****************************************
> >> >
> >> > # the spring constant to use, it doesnt really matter
> >> > k=100
> >> > # the target resolution for the representation, this is used to
> specify
> >> > how detailed
> >> > # the representation used should be
> >> > resolution=300
> >> > # the box to perform everything
> >> > bb=IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(0,0,0),
> >> > IMP.algebra.Vector3D(300, 300, 300))
> >> >
> >> >
> >> > # this function creates the molecular hierarchies for the various
> >> involved
> >> > proteins
> >> > def create_representation():
> >> > m= IMP.Model()
> >> > all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m))
> >> > all.set_name("the universe")
> >> > # create a protein, represented as a set of connected balls of
> >> > appropriate
> >> > # radii and number, chose by the resolution parameter and the
> >> number of
> >> > # amino acids.
> >> >
> >> > def create_protein_from_pdbs(name, files):
> >> >
> >> > def create_from_pdb(file):
> >> > sls=IMP.SetLogState(IMP.NONE)
> >> > datadir = os.getcwd()
> >> > print datadir
> >> > t=IMP.atom.read_pdb( datadir+'/' + file, m,
> >> > IMP.atom.ATOMPDBSelector())
> >> > del sls
> >> > #IMP.atom.show_molecular_hierarchy(t)
> >> > c=IMP.atom.Chain(IMP.atom.get_by_type(t,
> >> > IMP.atom.CHAIN_TYPE)[0])
> >> > if c.get_number_of_children()==0:
> >> > IMP.atom.show_molecular_hierarchy(t)
> >> > # there is no reason to use all atoms, just approximate
> the
> >> > pdb shape instead
> >> > s=IMP.atom.create_simplified_along_backbone(c,
> >> >
> >> resolution/300.0)
> >> > IMP.atom.destroy(t)
> >> > # make the simplified structure rigid
> >> > rb=IMP.atom.create_rigid_body(s)
> >> > # rb=IMP.atom.create_rigid_body(c)
> >> > rb.set_coordinates_are_optimized(True)
> >> > return s
> >> > # return c
> >> >
> >> > h= create_from_pdb(files[0])
> >> > h.set_name(name)
> >> > all.add_child(h)
> >> >
> >> > create_protein_from_pdbs("A", [Firstpdb])
> >> > create_protein_from_pdbs("B", [Secondpdb])
> >> > create_protein_from_pdbs("C", [Thirdpdb])
> >> > create_protein_from_pdbs("D", [Fourthpdb])
> >> > #create_protein_from_pdbs("C", ["rpt3_imp.pdb"])
> >> > return (m, all)
> >> >
> >> > # create the needed restraints and add them to the model
> >> >
> >> > def create_restraints(m, all):
> >> > def add_connectivity_restraint(s):
> >> >
> >> > tr= IMP.core.TableRefiner()
> >> > rps=[]
> >> > for sc in s:
> >> > ps= sc.get_selected_particles()
> >> > rps.append(ps[0])
> >> > tr.add_particle(ps[0], ps)
> >> >
> >> > # duplicate the IMP.atom.create_connectivity_restraint
> >> > functionality
> >> >
> >> > score=
> >> >
> >>
> IMP.core.KClosePairsPairScore(IMP.core.HarmonicSphereDistancePairScore(0,1),tr)
> >> >
> >> > r= IMP.core.MSConnectivityRestraint(m,score)
> >> >
> >> > iA = r.add_type([rps[0]])
> >> > iB = r.add_type([rps[1]])
> >> > iC = r.add_type([rps[2]])
> >> > iD = r.add_type([rps[3]])
> >> > n1 = r.add_composite([iA, iB, iC, iD])
> >> > n2 = r.add_composite([iA, iB], n1)
> >> > n3 = r.add_composite([iC, iD], n1)
> >> > n4 = r.add_composite([iB, iC, iD], n1)
> >> >
> >> > m.add_restraint(r)
> >> >
> >> > evr=IMP.atom.create_excluded_volume_restraint([all])
> >> > m.add_restraint(evr)
> >> > # a Selection allows for natural specification of what the
> >> restraints
> >> > act on
> >> > S= IMP.atom.Selection
> >> > sA=S(hierarchy=all, molecule="A")
> >> > sB=S(hierarchy=all, molecule="B")
> >> > sC=S(hierarchy=all, molecule="C")
> >> > sD=S(hierarchy=all, molecule="D")
> >> > add_connectivity_restraint([sA, sB, sC, sD])
> >> >
> >> >
> >> > # find acceptable conformations of the model
> >> > def get_conformations(m):
> >> > sampler= IMP.core.MCCGSampler(m)
> >> > sampler.set_bounding_box(bb)
> >> > # magic numbers, experiment with them and make them large enough
> for
> >> > things to work
> >> > sampler.set_number_of_conjugate_gradient_steps(100)
> >> > sampler.set_number_of_monte_carlo_steps(20)
> >> > sampler.set_number_of_attempts(models)
> >> > # We don't care to see the output from the sampler
> >> > sampler.set_log_level(IMP.SILENT)
> >> > # return the IMP.ConfigurationSet storing all the found
> >> configurations
> >> > that
> >> > # meet the various restraint maximum scores.
> >> > cs= sampler.create_sample()
> >> > return cs
> >> >
> >> >
> >> > # cluster the conformations and write them to a file
> >> > def analyze_conformations(cs, all, gs):
> >> > # we want to cluster the configurations to make them easier to
> >> > understand
> >> > # in the case, the clustering is pretty meaningless
> >> > embed= IMP.statistics.ConfigurationSetXYZEmbedding(cs,
> >> >
> >> > IMP.container.ListSingletonContainer(IMP.atom.get_leaves(all)), True)
> >> > cluster= IMP.statistics.create_lloyds_kmeans(embed, 10, 10000)
> >> > # dump each cluster center to a file so it can be viewed.
> >> > for i in range(cluster.get_number_of_clusters()):
> >> > center= cluster.get_cluster_center(i)
> >> > cs.load_configuration(i)
> >> > w= IMP.display.PymolWriter("cluster.%d.pym"%i)
> >> > for g in gs:
> >> > w.add_geometry(g)
> >> >
> >> >
> >> >
> >> >
> >>
> #******************************************************************************************
> >> > # now do the actual work
> >> >
> >> > (m,all)= create_representation()
> >> > IMP.atom.show_molecular_hierarchy(all)
> >> > create_restraints(m, all)
> >> >
> >> > # in order to display the results, we need something that maps the
> >> > particles onto
> >> > # geometric objets. The IMP.display.Geometry objects do this mapping.
> >> > # IMP.display.XYZRGeometry map an IMP.core.XYZR particle onto a sphere
> >> > gs=[]
> >> > for i in range(all.get_number_of_children()):
> >> > color= IMP.display.get_display_color(i)
> >> > n= all.get_child(i)
> >> > name= n.get_name()
> >> > g= IMP.atom.HierarchyGeometry(n)
> >> > g.set_color(color)
> >> > gs.append(g)
> >> >
> >> > cs= get_conformations(m)
> >> >
> >> > print "found", cs.get_number_of_configurations(), "solutions"
> >> >
> >> > ListScores = []
> >> > for i in range(0, cs.get_number_of_configurations()):
> >> > cs.load_configuration(i)
> >> > # print the configuration
> >> > print "solution number: ",i,"scored :", m.evaluate(False)
> >> > ListScores.append(m.evaluate(False))
> >> >
> >> > f1 = open("out_scores.csv", "w")
> >> > f1.write("\n".join(map(lambda x: str(x), ListScores)))
> >> > f1.close()
> >> >
> >> > # for each of the configuration, dump it to a file to view in pymol
> >> > for i in range(0, cs.get_number_of_configurations()):
> >> > JOSH = cs.load_configuration(i)
> >> > S= IMP.atom.Selection
> >> > h= IMP.atom.Hierarchy.get_children(cs)
> >> > tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf")
> >> > rh = RMF.create_rmf_file(tfn)
> >> >
> >> > # add the hierarchy to the file
> >> > IMP.rmf.add_hierarchies(rh, h)
> >> >
> >> > # add the current configuration to the file as frame 0
> >> > IMP.rmf.save_frame(rh)
> >> >
> >> > for g in gs:
> >> > w.add_geometry(g)
> >> >
> >> > analyze_conformations(cs, all, gs)
> >> >
> >> >
> >> > _______________________________________________
> >> > IMP-users mailing list
> >> > IMP-users(a)salilab.org
> >> > https://salilab.org/mailman/listinfo/imp-users
> >> >
> >> >
> >>
> >>
> >> --
> >> Barak
> >>
2
2
Hi Barek,
So I'm not giving hierarchy.get_children the correct input:
TypeError: unbound method get_children() must be called with Hierarchy
instance as first argument (got ConfigurationSet instance instead)
I'm not sure which argument is the hierarchy instance.
Thanks,
Josh
-------------------------------------------------
cs= get_conformations(m)
for i in range(0, cs.get_number_of_configurations()):
JOSH = cs.load_configuration(i)
S= IMP.atom.Selection
h= IMP.atom.Hierarchy.get_children(cs)
tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf")
rh = RMF.create_rmf_file(tfn)
On 1 July 2014 17:31, <imp-users-request(a)salilab.org> wrote:
> Send IMP-users mailing list submissions to
> imp-users(a)salilab.org
>
> To subscribe or unsubscribe via the World Wide Web, visit
> https://salilab.org/mailman/listinfo/imp-users
> or, via email, send a message with subject or body 'help' to
> imp-users-request(a)salilab.org
>
> You can reach the person managing the list at
> imp-users-owner(a)salilab.org
>
> When replying, please edit your Subject line so it is more specific
> than "Re: Contents of IMP-users digest..."
>
>
> Today's Topics:
>
> 1. Re: Sampling and writing to pym/rmf (Barak Raveh)
>
>
> ----------------------------------------------------------------------
>
> Message: 1
> Date: Tue, 1 Jul 2014 09:31:33 -0700
> From: Barak Raveh <barak.raveh(a)gmail.com>
> To: Help and discussion for users of IMP <imp-users(a)salilab.org>
> Subject: Re: [IMP-users] Sampling and writing to pym/rmf
> Message-ID:
> <CAHp+_UowiBwJozbwOfi8yFEVt7Z8o2tEZ=
> LvYPnJh-LjpC2cSA(a)mail.gmail.com>
> Content-Type: text/plain; charset="utf-8"
>
> Hi Josh, from a very superficial look, your code to write the RMF files
> seems fine - do you get an output RMF file? Could you load it in Chimera?
>
>
> On Tue, Jul 1, 2014 at 2:40 AM, Josh Bullock <jma.bullock(a)gmail.com>
> wrote:
>
> > Hello,
> >
> > I'm relatively new to all this so please let me know if i'm making any
> > obvious errors ...
> >
> > Essentially all i'm trying to do is generate an ensemble of models made
> > from four subunits - constrained by MS connectivity restraints. The
> models
> > get scored but nothing seems to write to the pymol file. Ideally i'd like
> > to write to an .rmf but i haven't worked that one out either ...
> >
> > Is this a reasonable way to go about my problem ?
> >
> > Many thanks,
> >
> > Josh
> >
> > -------------------------------------------
> >
> > import IMP
> > import IMP.atom
> > import IMP.rmf
> > import inspect
> > import IMP.container
> > import IMP.display
> > import IMP.statistics
> > #import IMP.example
> > import sys, math, os, optparse
> > import RMF
> >
> > from optparse import OptionParser
> >
> >
> > # Convert the arguments into strings and number
> > Firstpdb = str(sys.argv[1])
> > Secondpdb = str(sys.argv[2])
> > Thirdpdb = str(sys.argv[3])
> > Fourthpdb = str(sys.argv[4])
> > models = float(sys.argv[5])
> >
> > #*****************************************
> >
> > # the spring constant to use, it doesnt really matter
> > k=100
> > # the target resolution for the representation, this is used to specify
> > how detailed
> > # the representation used should be
> > resolution=300
> > # the box to perform everything
> > bb=IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(0,0,0),
> > IMP.algebra.Vector3D(300, 300, 300))
> >
> >
> > # this function creates the molecular hierarchies for the various
> involved
> > proteins
> > def create_representation():
> > m= IMP.Model()
> > all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m))
> > all.set_name("the universe")
> > # create a protein, represented as a set of connected balls of
> > appropriate
> > # radii and number, chose by the resolution parameter and the number
> of
> > # amino acids.
> >
> > def create_protein_from_pdbs(name, files):
> >
> > def create_from_pdb(file):
> > sls=IMP.SetLogState(IMP.NONE)
> > datadir = os.getcwd()
> > print datadir
> > t=IMP.atom.read_pdb( datadir+'/' + file, m,
> > IMP.atom.ATOMPDBSelector())
> > del sls
> > #IMP.atom.show_molecular_hierarchy(t)
> > c=IMP.atom.Chain(IMP.atom.get_by_type(t,
> > IMP.atom.CHAIN_TYPE)[0])
> > if c.get_number_of_children()==0:
> > IMP.atom.show_molecular_hierarchy(t)
> > # there is no reason to use all atoms, just approximate the
> > pdb shape instead
> > s=IMP.atom.create_simplified_along_backbone(c,
> > resolution/300.0)
> > IMP.atom.destroy(t)
> > # make the simplified structure rigid
> > rb=IMP.atom.create_rigid_body(s)
> > # rb=IMP.atom.create_rigid_body(c)
> > rb.set_coordinates_are_optimized(True)
> > return s
> > # return c
> >
> > h= create_from_pdb(files[0])
> > h.set_name(name)
> > all.add_child(h)
> >
> > create_protein_from_pdbs("A", [Firstpdb])
> > create_protein_from_pdbs("B", [Secondpdb])
> > create_protein_from_pdbs("C", [Thirdpdb])
> > create_protein_from_pdbs("D", [Fourthpdb])
> > #create_protein_from_pdbs("C", ["rpt3_imp.pdb"])
> > return (m, all)
> >
> > # create the needed restraints and add them to the model
> >
> > def create_restraints(m, all):
> > def add_connectivity_restraint(s):
> >
> > tr= IMP.core.TableRefiner()
> > rps=[]
> > for sc in s:
> > ps= sc.get_selected_particles()
> > rps.append(ps[0])
> > tr.add_particle(ps[0], ps)
> >
> > # duplicate the IMP.atom.create_connectivity_restraint
> > functionality
> >
> > score=
> >
> IMP.core.KClosePairsPairScore(IMP.core.HarmonicSphereDistancePairScore(0,1),tr)
> >
> > r= IMP.core.MSConnectivityRestraint(m,score)
> >
> > iA = r.add_type([rps[0]])
> > iB = r.add_type([rps[1]])
> > iC = r.add_type([rps[2]])
> > iD = r.add_type([rps[3]])
> > n1 = r.add_composite([iA, iB, iC, iD])
> > n2 = r.add_composite([iA, iB], n1)
> > n3 = r.add_composite([iC, iD], n1)
> > n4 = r.add_composite([iB, iC, iD], n1)
> >
> > m.add_restraint(r)
> >
> > evr=IMP.atom.create_excluded_volume_restraint([all])
> > m.add_restraint(evr)
> > # a Selection allows for natural specification of what the restraints
> > act on
> > S= IMP.atom.Selection
> > sA=S(hierarchy=all, molecule="A")
> > sB=S(hierarchy=all, molecule="B")
> > sC=S(hierarchy=all, molecule="C")
> > sD=S(hierarchy=all, molecule="D")
> > add_connectivity_restraint([sA, sB, sC, sD])
> >
> >
> > # find acceptable conformations of the model
> > def get_conformations(m):
> > sampler= IMP.core.MCCGSampler(m)
> > sampler.set_bounding_box(bb)
> > # magic numbers, experiment with them and make them large enough for
> > things to work
> > sampler.set_number_of_conjugate_gradient_steps(100)
> > sampler.set_number_of_monte_carlo_steps(20)
> > sampler.set_number_of_attempts(models)
> > # We don't care to see the output from the sampler
> > sampler.set_log_level(IMP.SILENT)
> > # return the IMP.ConfigurationSet storing all the found
> configurations
> > that
> > # meet the various restraint maximum scores.
> > cs= sampler.create_sample()
> > return cs
> >
> >
> > # cluster the conformations and write them to a file
> > def analyze_conformations(cs, all, gs):
> > # we want to cluster the configurations to make them easier to
> > understand
> > # in the case, the clustering is pretty meaningless
> > embed= IMP.statistics.ConfigurationSetXYZEmbedding(cs,
> >
> > IMP.container.ListSingletonContainer(IMP.atom.get_leaves(all)), True)
> > cluster= IMP.statistics.create_lloyds_kmeans(embed, 10, 10000)
> > # dump each cluster center to a file so it can be viewed.
> > for i in range(cluster.get_number_of_clusters()):
> > center= cluster.get_cluster_center(i)
> > cs.load_configuration(i)
> > w= IMP.display.PymolWriter("cluster.%d.pym"%i)
> > for g in gs:
> > w.add_geometry(g)
> >
> >
> >
> >
> #******************************************************************************************
> > # now do the actual work
> >
> > (m,all)= create_representation()
> > IMP.atom.show_molecular_hierarchy(all)
> > create_restraints(m, all)
> >
> > # in order to display the results, we need something that maps the
> > particles onto
> > # geometric objets. The IMP.display.Geometry objects do this mapping.
> > # IMP.display.XYZRGeometry map an IMP.core.XYZR particle onto a sphere
> > gs=[]
> > for i in range(all.get_number_of_children()):
> > color= IMP.display.get_display_color(i)
> > n= all.get_child(i)
> > name= n.get_name()
> > g= IMP.atom.HierarchyGeometry(n)
> > g.set_color(color)
> > gs.append(g)
> >
> > cs= get_conformations(m)
> >
> > print "found", cs.get_number_of_configurations(), "solutions"
> >
> > ListScores = []
> > for i in range(0, cs.get_number_of_configurations()):
> > cs.load_configuration(i)
> > # print the configuration
> > print "solution number: ",i,"scored :", m.evaluate(False)
> > ListScores.append(m.evaluate(False))
> >
> > f1 = open("out_scores.csv", "w")
> > f1.write("\n".join(map(lambda x: str(x), ListScores)))
> > f1.close()
> >
> > # for each of the configuration, dump it to a file to view in pymol
> > for i in range(0, cs.get_number_of_configurations()):
> > JOSH = cs.load_configuration(i)
> > S= IMP.atom.Selection
> > h= IMP.atom.Hierarchy.get_children(cs)
> > tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf")
> > rh = RMF.create_rmf_file(tfn)
> >
> > # add the hierarchy to the file
> > IMP.rmf.add_hierarchies(rh, h)
> >
> > # add the current configuration to the file as frame 0
> > IMP.rmf.save_frame(rh)
> >
> > for g in gs:
> > w.add_geometry(g)
> >
> > analyze_conformations(cs, all, gs)
> >
> >
> > _______________________________________________
> > IMP-users mailing list
> > IMP-users(a)salilab.org
> > https://salilab.org/mailman/listinfo/imp-users
> >
> >
>
>
> --
> Barak
>
2
1
Hello,
I'm relatively new to all this so please let me know if i'm making any
obvious errors ...
Essentially all i'm trying to do is generate an ensemble of models made
from four subunits - constrained by MS connectivity restraints. The models
get scored but nothing seems to write to the pymol file. Ideally i'd like
to write to an .rmf but i haven't worked that one out either ...
Is this a reasonable way to go about my problem ?
Many thanks,
Josh
-------------------------------------------
import IMP
import IMP.atom
import IMP.rmf
import inspect
import IMP.container
import IMP.display
import IMP.statistics
#import IMP.example
import sys, math, os, optparse
import RMF
from optparse import OptionParser
# Convert the arguments into strings and number
Firstpdb = str(sys.argv[1])
Secondpdb = str(sys.argv[2])
Thirdpdb = str(sys.argv[3])
Fourthpdb = str(sys.argv[4])
models = float(sys.argv[5])
#*****************************************
# the spring constant to use, it doesnt really matter
k=100
# the target resolution for the representation, this is used to specify how
detailed
# the representation used should be
resolution=300
# the box to perform everything
bb=IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(0,0,0),
IMP.algebra.Vector3D(300, 300, 300))
# this function creates the molecular hierarchies for the various involved
proteins
def create_representation():
m= IMP.Model()
all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m))
all.set_name("the universe")
# create a protein, represented as a set of connected balls of
appropriate
# radii and number, chose by the resolution parameter and the number of
# amino acids.
def create_protein_from_pdbs(name, files):
def create_from_pdb(file):
sls=IMP.SetLogState(IMP.NONE)
datadir = os.getcwd()
print datadir
t=IMP.atom.read_pdb( datadir+'/' + file, m,
IMP.atom.ATOMPDBSelector())
del sls
#IMP.atom.show_molecular_hierarchy(t)
c=IMP.atom.Chain(IMP.atom.get_by_type(t,
IMP.atom.CHAIN_TYPE)[0])
if c.get_number_of_children()==0:
IMP.atom.show_molecular_hierarchy(t)
# there is no reason to use all atoms, just approximate the pdb
shape instead
s=IMP.atom.create_simplified_along_backbone(c,
resolution/300.0)
IMP.atom.destroy(t)
# make the simplified structure rigid
rb=IMP.atom.create_rigid_body(s)
# rb=IMP.atom.create_rigid_body(c)
rb.set_coordinates_are_optimized(True)
return s
# return c
h= create_from_pdb(files[0])
h.set_name(name)
all.add_child(h)
create_protein_from_pdbs("A", [Firstpdb])
create_protein_from_pdbs("B", [Secondpdb])
create_protein_from_pdbs("C", [Thirdpdb])
create_protein_from_pdbs("D", [Fourthpdb])
#create_protein_from_pdbs("C", ["rpt3_imp.pdb"])
return (m, all)
# create the needed restraints and add them to the model
def create_restraints(m, all):
def add_connectivity_restraint(s):
tr= IMP.core.TableRefiner()
rps=[]
for sc in s:
ps= sc.get_selected_particles()
rps.append(ps[0])
tr.add_particle(ps[0], ps)
# duplicate the IMP.atom.create_connectivity_restraint functionality
score=
IMP.core.KClosePairsPairScore(IMP.core.HarmonicSphereDistancePairScore(0,1),tr)
r= IMP.core.MSConnectivityRestraint(m,score)
iA = r.add_type([rps[0]])
iB = r.add_type([rps[1]])
iC = r.add_type([rps[2]])
iD = r.add_type([rps[3]])
n1 = r.add_composite([iA, iB, iC, iD])
n2 = r.add_composite([iA, iB], n1)
n3 = r.add_composite([iC, iD], n1)
n4 = r.add_composite([iB, iC, iD], n1)
m.add_restraint(r)
evr=IMP.atom.create_excluded_volume_restraint([all])
m.add_restraint(evr)
# a Selection allows for natural specification of what the restraints
act on
S= IMP.atom.Selection
sA=S(hierarchy=all, molecule="A")
sB=S(hierarchy=all, molecule="B")
sC=S(hierarchy=all, molecule="C")
sD=S(hierarchy=all, molecule="D")
add_connectivity_restraint([sA, sB, sC, sD])
# find acceptable conformations of the model
def get_conformations(m):
sampler= IMP.core.MCCGSampler(m)
sampler.set_bounding_box(bb)
# magic numbers, experiment with them and make them large enough for
things to work
sampler.set_number_of_conjugate_gradient_steps(100)
sampler.set_number_of_monte_carlo_steps(20)
sampler.set_number_of_attempts(models)
# We don't care to see the output from the sampler
sampler.set_log_level(IMP.SILENT)
# return the IMP.ConfigurationSet storing all the found configurations
that
# meet the various restraint maximum scores.
cs= sampler.create_sample()
return cs
# cluster the conformations and write them to a file
def analyze_conformations(cs, all, gs):
# we want to cluster the configurations to make them easier to
understand
# in the case, the clustering is pretty meaningless
embed= IMP.statistics.ConfigurationSetXYZEmbedding(cs,
IMP.container.ListSingletonContainer(IMP.atom.get_leaves(all)), True)
cluster= IMP.statistics.create_lloyds_kmeans(embed, 10, 10000)
# dump each cluster center to a file so it can be viewed.
for i in range(cluster.get_number_of_clusters()):
center= cluster.get_cluster_center(i)
cs.load_configuration(i)
w= IMP.display.PymolWriter("cluster.%d.pym"%i)
for g in gs:
w.add_geometry(g)
#******************************************************************************************
# now do the actual work
(m,all)= create_representation()
IMP.atom.show_molecular_hierarchy(all)
create_restraints(m, all)
# in order to display the results, we need something that maps the
particles onto
# geometric objets. The IMP.display.Geometry objects do this mapping.
# IMP.display.XYZRGeometry map an IMP.core.XYZR particle onto a sphere
gs=[]
for i in range(all.get_number_of_children()):
color= IMP.display.get_display_color(i)
n= all.get_child(i)
name= n.get_name()
g= IMP.atom.HierarchyGeometry(n)
g.set_color(color)
gs.append(g)
cs= get_conformations(m)
print "found", cs.get_number_of_configurations(), "solutions"
ListScores = []
for i in range(0, cs.get_number_of_configurations()):
cs.load_configuration(i)
# print the configuration
print "solution number: ",i,"scored :", m.evaluate(False)
ListScores.append(m.evaluate(False))
f1 = open("out_scores.csv", "w")
f1.write("\n".join(map(lambda x: str(x), ListScores)))
f1.close()
# for each of the configuration, dump it to a file to view in pymol
for i in range(0, cs.get_number_of_configurations()):
JOSH = cs.load_configuration(i)
S= IMP.atom.Selection
h= IMP.atom.Hierarchy.get_children(cs)
tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf")
rh = RMF.create_rmf_file(tfn)
# add the hierarchy to the file
IMP.rmf.add_hierarchies(rh, h)
# add the current configuration to the file as frame 0
IMP.rmf.save_frame(rh)
for g in gs:
w.add_geometry(g)
analyze_conformations(cs, all, gs)
3
2